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Enhancer selectivity across cell types 
delineates three functionally distinct 
enhancer‑promoter regulation patterns
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Abstract 

Background  Multiple enhancers co-regulating the same gene is prevalent and plays a crucial role during develop-
ment and disease. However, how multiple enhancers coordinate the same gene expression across various cell types 
remains largely unexplored at genome scale.

Results  We develop a computational approach that enables the quantitative assessment of enhancer specificity 
and selectivity across diverse cell types, leveraging enhancer-promoter (E-P) interactions data. We observe two well-
known gene regulation patterns controlled by enhancer clusters, which regulate the same gene either in a limited 
number of cell types (Specific pattern, Spe) or in the majority of cell types (Conserved pattern, Con), both of which 
are enriched for super-enhancers (SEs). We identify a previously overlooked pattern (Variable pattern, Var) that multi-
ple enhancers link to the same gene, but rarely coexist in the same cell type. These three patterns control the genes 
associating with distinct biological function and exhibit unique epigenetic features. Specifically, we discover a subset 
of Var patterns contains Shared enhancers with stable enhancer-promoter interactions in the majority of cell types, 
which might contribute to maintaining gene expression by recruiting abundant CTCF.

Conclusions  Together, our findings reveal three distinct E-P regulation patterns across different cell types, providing 
insights into deciphering the complexity of gene transcriptional regulation.

Keywords  Enhancer-promoter interactions, Enhancer selectivity, Gene regulation patterns across cell types

Background
Enhancer regulatory elements are specific non-coding 
DNA sequences that cis-regulate intracellular gene 
expression by binding with transcription factors (TFs) 
[1]. Multiple enhancers form cluster to regulate genes, 
usually associated with enhanced transcriptional activity 

and enrichment of key genes and super-enhancers for cell 
fate [2–5]. Multiple enhancers can also act in an additive, 
synergistic, redundant or hierarchical manner to regulate 
gene expression [6]. The addictive and synergistic pat-
terns have been described at the level of SEs and exert a 
greater impact on controlling cell identity during devel-
opment and tumorigenesis [7–9], such as SEs controlling 
α-globin and MYC genes, where gene activity increases 
linearly with the number of enhancers [10, 11]. Enhancer 
redundancy is prevalent in the mammalian genome, 
where multiple enhancers can buffer the risk of lethality 
due to the loss of individual enhancers [12, 13]. Moreo-
ver, multiple enhancers can form a hierarchical struc-
ture where those certain enhancers play a crucial role 
in chromatin organization and gene activation [14, 15]. 
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Meanwhile, studies have shown that the expression of the 
same gene may rely on distinct enhancers in different cell 
types, exemplified by as Tet2 [16] and MYC [10]. These 
studies highlight the complexity of E-P regulations. How-
ever, most of these studies have focused on investigating 
enhancers within individual cell type, it remains largely 
unexplored how multiple enhancers co-regulate gene 
expression across various cell types that do not overlap in 
space at genome scale [17–19].

Chromosome conformation capture techniques unveil 
the three-dimensional spatial folding of the genome, 
thereby facilitating long-range chromatin interactions 
between enhancers and promoters, leading to more 
complex gene regulation [20–27]. Technologies such as 
Hi-C [28] and its derivatives, including ChIA-PET [29], 
have made significant advancements in studying chro-
matin conformation and interactions. However, these 
techniques still faces the challenges such as high cost 
and low resolution. To overcome these challenges, algo-
rithms utilizing DNA sequences and chromatin features 
have emerged. For example, the Activity-by-Contact 
(ABC)  model  predicts genome-wide E-P interactions in 
various cells and tissues [30–32]. These computational 
approaches and the available data enhance our ability to 
explore how multiple enhancers coordinate gene expres-
sion across various cell types at the genome scale.

In this study, we have developed an approach to sys-
tematically analyze the regulatory networks between 
enhancers and promoters across different cell types at 
the genome scale based on the E-P interactions predicted 
by the ABC model [30]. Specifically, we have quantified 
enhancer specificity and selectivity across various cell 
types and identified three patterns of E-P regulation: Spe, 
Var and Con, where Var pattern is ignored previously. 
Each pattern exhibits distinct characteristics in terms of 
chromatin accessibility, TFs binding, target gene expres-
sion and function enrichment. Overall, our findings 
reveal the existence of distinct E-P regulation patterns 
that explain the coordination of gene expression by mul-
tiple enhancers across various cell types.

Results
Enhancer specificity and selectivity across diverse cell 
types delineates three distinct patterns of E‑P regulation
In order to gain insight into how multiple enhancers co-
regulate genes across diverse cell types, we developed a 
computational approach that quantifies enhancer speci-
ficity and selectivity based on E-P interactions data. First, 
for each gene, we complied a set of enhancers that exhib-
ited E-P interactions with its promoter in at least one cell 
type, representing by a binary matrix (Fig. 1A). Second, 
we defined two metrics for each gene to delineate its E-P 
regulation patterns across various cell types (Fig.  1B). 

Given a gene, enhancer specificity (SPE) indicates the cell 
specificity of each enhancer, while enhancer selectivity 
(SEL) represents the proportion of enhancers selected to 
control its expression in each cell type. SEL is quantified 
by the number of enhancers linked to the gene in a spe-
cific cell type divided by the total number of enhancers 
linked across various cell types (Fig. 1B). The SPE score 
quantifies the overall specificity of enhancers associated 
with a gene across different cell types, calculated as the 
average SPE value of each enhancer. A higher SPE score 
indicate that the gene tends to be regulated by more cell 
type-specific enhancers. The SEL score reflects the vari-
ability in the number of enhancers linked to a gene and 
is determined by the relative standard deviation of SEL in 
each cell type. A higher SEL score suggests that the gene 
is more likely to be regulated by enhancers present in a 
minority of cell types (Fig. 1C).

We applied our pipeline to investigate the E-P regula-
tions across various human cell types, using publicly 
available E-P interactions defined by the ABC-model 
[30]. The dataset comprised 819,654 E-P interactions 
involving 22,921 genes and 229,038 enhancers across 77 
cell types (Additional file 1: Figures S1A, B; see Methods). 
To assess the biological significance of the predicted E-P 
interactions by the ABC model, we collected Hi-C [33] 
and Hi-TrAC [34] data from six cell types. The results 
indicated that ABC links across all six cell types were 
significantly enriched for Hi-C chromatin interactions 
compared to the genomic control group at various E-P 
distances. We observed a strong correlation between the 
ratio of validated ABC links and the resolution of prox-
imity ligation-based chromatin interaction data. Specifi-
cally, Hi-TrAC data for K562 and GM12878 with higher 
resolutions, supported over 40% of ABC links, while the 
remaining four datasets with resolutions approximately 
ranging from 5k to 10k showed slightly lower validation 
rates. Overall, the E-P interactions predicted by the ABC 
model demonstrate biologically meaningful (Additional 
file 1: Figure S 2). To focus on the regulation of multiple 
enhancers, we excluded genes associated with only one 
enhancer (135 genes) from further analysis. This resulted 
in a median of 33 enhancers per gene (Additional file 1: 
Figure S1C). Then, we employed K-means clustering 
(k=3) based on SPE score and SEL score to categorize the 
genes into three distinct regulation patterns: Spe, Var and 
Con (Fig. 2A and Additional file 1: Figures S3 and S4; see 
Methods).

To systematically characterize these three E-P regu-
lation patterns across various cell types at the genome 
scale, we performed the following analysis. First, we 
ranked all genes according to their SPE score and SEL 
score (Figs. 2B, C). As expected, genes belonging to dif-
ferent patterns showed distinct distributions of SPE score 
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Fig. 1  A computational approach to quantify enhancer specificity and selectivity across cell types based on E-P interactions. A Step1: E-P 
interactions as the input. For each gene, the E-P interactions across various cell types were represented by a binary matrix, where the value 1 and 0 
indicated the presence or absence of an E-P interaction in individual cell type. B Step2: Quantification of enhancer specificity (SPE) and enhancer 
selectivity (SEL) across diverse cell types. The cell-type specificity for each enhancer was measured by its relative frequency across all cell types, 
while enhancer selectivity in each cell type was determined by the percentage of the constituent enhancers involved in interactions in the cell type. 
The right panel provides an example to illustrate the calculation of SPE and SEL. C Step3: Calculation of the SPE score and SEL score for each gene. 
The SPE score for a gene was computed as the mean of the specificity of its associated enhancers. The SEL score across cell types was determined 
by the relative standard deviation of enhancer selectivity across all cell types



Page 4 of 15Wu and Huang ﻿BMC Genomics          (2024) 25:483 

and SEL score across all genes. Furthermore, we ran-
domly selected some genes from each pattern to visualize 
the distribution of their associated enhancers. Consid-
ering that the number of associated enhancers varies 
among genes and cell types, we divided the all enhanc-
ers for each gene equally into four groups and counted 
the enhancers with E-P interactions in each regions spe-
cific to a given cell type (Fig. 2D, left panel). The results 
showed that these E-P interactions exhibit three com-
pletely different distribution patterns (Fig.  2D, right 
panel). As mentioned earlier, a higher SPE score indicated 
the gene is likely regulated by enhancers specific to cer-
tain cells, as depicted in the heatmap where Spe and Var 
enhancers were limited in a minority of cell types com-
pared to Con. Conversely, a lower SEL score indicated the 
gene is connected to enhancers across various cell types, 
as shown in the heatmap where Var and Con genes linked 

a certain number of enhancers in multiple cell types 
(Fig. 2D). This finding confirmed the effectiveness of SPE 
scores and SEL scores in classifying E-P regulatory rela-
tionships. In conclusion, we define the SPE score and SEL 
score as metrics to classify the enhancer-gene regulatory 
relationships across various cell types into three patterns. 
Spe represents a cell-specific regulation pattern, while 
Var represents a widespread but cell-dependent regula-
tion pattern, and Con represents a widely present and 
conserved regulation pattern.

Three regulation patterns control the expression 
of functionally distinct genes
Here, we identified a total of 3,740, 15,329 and 3,716 
genes belonging to Spe, Var and Con patterns, respec-
tively (Fig. 3A). We first compared the number of enhanc-
ers associated with genes and found that Var genes were 

Fig. 2  SPE score and SEL score across cell types delineates three E-P regulation patterns. A The SPE score and SEL score for all genes based on E-P 
interactions in 77 cell types (defined by ABC-model) were subjected to K-means clustering. The clustering resulted in three E-P regulation patterns: 
Spe, Var and Con. B Distribution of SPE score at genome scale in three patterns. The x-axis represents genes ranked by SPE score. C Distribution 
of SEL score at genome scale in three patterns. The x-axis represents genes ranked by SEL score. D Six genes representing for each three patterns 
were randomly selected. For each gene, the associated enhancers determined by E-P interactions were divided into four groups (column). The color 
indicated the number of enhancers located in each group within individual cell type. The order of cell type was determined by the total number 
of enhancers in each cell type
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associated with a significantly higher number of enhanc-
ers across all cell types but fewer enhancers within indi-
vidual cell type compared to Spe and Con genes (Fig. 3B). 
This implied that Var genes in each cell type were regu-
lated by the fewest enhancers, yet these highly cell-spe-
cific enhancers were broadly distributed across various 
cell types. SEs have been known to control expression of 
genes that define cell identity [3]. It is worth noting that 
Var enhancers showed the lowest proportion of SEs in 
different cells (Fig. 3C; see Methods), distinguishing them 
from the known SE regulation pattern.

Furthermore, genes controlled by these three patterns 
displayed distinct expression trends. Spe gene expression 

exhibited high cell specificity and the lowest overall level. 
In contrast, Var and Con genes were expressed in most 
of cell types, with Con genes exhibiting higher expression 
overall compared to Var genes (Figs. 3D, E). GO analysis 
revealed that Spe genes were associated with various cell-
specific functions, such as sensory perception of neural 
cells and keratinization of epithelial cells (Fig.  3F). This 
finding aligns with the notion that cell-specific enhancer 
clusters playing a critical role in determining cell iden-
tity [3]. Interestingly, although both Var and Con genes 
expressed in multiple cell types, they were enriched for 
distinct biological functions (Fig.  3F). Var genes were 
mainly involved in the synthesis of macromolecules and 

Fig. 3  Three regulation patterns control genes with distinct biological functions. A The number of genes controlled by three patterns. B 
The number of enhancers linked to each gene across all cell types and in a single cell type. The top panel illustrates the statistical analysis 
of enhancers. C Percentage of enhancers in three patterns located within super-enhancer regions was shown for each cell type. The y-axis indicates 
the percentage of three patterns scaled to 100%. D The expression levels of genes in three regulation patterns. The x-axis indicates the cell 
type order for each gene ranked by its expression value. E Variation in gene expression across cell types for genes. Variation was represented 
by the relative standard deviation. F GO enrichment analysis. P-values were calculated using Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., 
not significant
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organelle assembly, while Con genes were predominantly 
associated with in DNA, RNA and gene expression-
related functions that are fundamental to cellular life 
(Fig. 3F). Additionally, a significant proportion of house-
keeping genes fell into the Var and Con categories, with 
Con genes having the highest proportion of housekeep-
ing genes [35] (Additional file  1: Figure S5). This also 
demonstrated that Var and Con genes were involved in 
more fundamental and conserved functional modules. 
Taken together, these findings demonstrate that the three 
regulation patterns identified in our study control func-
tionally distinct genes, exhibiting specific gene expres-
sion patterns across diverse cell types.

The three regulation patterns display distinct epigenetic 
features
To further characterize the epigenetic features and 
understand the underlying mechanisms in three regula-
tion patterns, we next compared the chromatin acces-
sibility of enhancers and promoters. We found that the 
Con pattern showed the highest accessibility in both 
promoters and enhancer across all cell types. This was 
followed by the Var pattern, while the Spe pattern dis-
played the lowest accessibility (Fig.  4A). These results 
aligned with the observations we made in gene expres-
sion (Fig.  3D). Furthermore, the higher correlation 
between gene expression and the promoter accessibility 
also suggested that the explanatory capacity of promoters 
exceeds that of enhancers in elucidating the regulation of 
gene expression (Additional file 1: Figure S6). The acces-
sibility of the three types of promoters remained stable 
across cell types compared to enhancers, which exhibited 
significantly different variations (Fig. 4A). This suggested 
that enhancers play a dominant role in determining the 
cell-specificity level of gene expression.

Interestingly, motif enrichment analysis revealed that 
the top 20 enriched motifs in promoters of three pat-
terns were divergent, while the motifs of enhancers 
were almost identical (AP-1 family) (Fig. 4B). To investi-
gate this further, we selected some TFs with high motif 
enrichment of different patterns from the top 20 motifs 
and obtained the corresponding ChIP-seq data (Addi-
tional file  2: Table S  1). The results showed that at the 
promoter region, all TFs were more enriched in Var and 
Con than those in Spe. Even TBP and CREB1, which had 
higher motif enrichment in Spe, showed the lowest signal 
intensity (Fig. 4C, left panel and Additional file 1: Figure 
S7). In contrast, the signal strength of TFs of Spe enhanc-
ers is even slightly stronger than the other patterns 
(Fig. 4C, right). These results suggested the TF composi-
tion varies across promoters, reflecting diverse transcrip-
tional environments for genes with accessible promoters. 
Meanwhile, Var and Con have higher TF intensity than 

Spe, which is the primary factor contributing to the sub-
stantial difference in expression among these gene types. 
Conversely, the enhancers showed an opposite pattern, 
indicating that regardless of accessibility, the enhanc-
ers in three patterns maintain comparable TF strengths. 
Notably, genes with weak promoter accessibility, such as 
Spe, required more enhancers to sustain TF intensity and 
activate gene expression (Figs. 3B and 4C).

Taken together, our results highlight distinct features 
of the three patterns in terms of promoters and enhanc-
ers, including chromatin accessibility, motif enrichment, 
TF binding, and their correlation with gene expression 
(Additional file 1: Figure S8).

A subset of Var pattern contains Shared enhancers 
with stable E‑P interactions across the majority of cell 
types
Var exhibited a distinct E-P regulation pattern where 
each gene was associated with multiple enhancers, but 
these enhancers rarely coexisted in the same cell type. 
While previous studies have focused on the phenom-
enon of multiple enhancers controlled the same gene in 
the same cell type, the coordination and impact on gene 
expression of enhancers in Var across various cell types, 
remained largely unexplored. To this end, we further 
investigated the distribution of E-P interactions in Var. 
Interestingly, we observed a subset of Var genes showed 
a unique regulation pattern. In this pattern, a certain 
enhancer consistently interacted with the same gene 
across most of cell types, while the remaining enhancers 
formed cell-type-specific interactions. For example, the 
14th enhancer of the ACYP1 gene maintained a regula-
tory relationship with the ACYP1 promoter in almost all 
cell types (Fig. 5A, left panel). In contrast, other genes in 
Var e.g. the ADRM1 gene, exhibited only cell-type spe-
cific E-P interactions (Fig. 5A, right panel).

To further understand the function and mecha-
nisms underlying the two regulation patterns, we clas-
sified enhancers that exhibited E-P interaction with the 
same gene in more than half of the cell types as ‘Shared’ 
enhancers. Subsequently, we systematically subdivided 
Var genes into two categories: Var I, which included 
genes with Shared enhancer, and Var II, which consisted 
of genes without Shared enhancers (Fig.  5B; see Meth-
ods). This classification resulted in 4,877 in Var I and 
6,870 genes Var II (Fig. 5C). Genes in Var I showed lower 
overall expression levels across various cell types com-
pared to those in Var II. However, they exhibited higher 
expression variations across cell types (Fig.  5D). Strik-
ingly, GO analysis revealed distinct functional associa-
tion for Var I and Var II regulated genes. Specifically, Var 
I genes were significantly enriched in membrane-specific 
structures such as membrane organelles, particularly 
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vesicles (Fig.  5E, left panel). On the other hand, Var II 
genes were enriched in non-membrane organelles and 
internal structures of the nucleus. (Fig. 5E, right panel). 
In summary, Var I gene expression exhibited greater vari-
ability and was primarily associated with the dynamic 
membrane network. In contrast, Var II gene expression 
was higher and relatively stable, and these genes played a 
role in the assembly of other organelles.

Collectively, our findings identify a group of Shared 
enhancers, which maintain consistent E-P interac-
tions across most cell types, and refine two distinct 
E-P organizations, which control genes associated 
with membrane-related and non-membrane cellular 
functions.

Fig. 4  The epigenetic characteristics of enhancers and promoters in the three E-P regulation patterns. A Chromatin accessibility of the promoter 
(left) and enhancer (right), measured using DNase-seq or ATAC-seq (if ATAC-seq data is unavailable). The enhancer accessibility of each gene 
was the sum of all enhancer accessibility. The cell types were ordered consistently with Fig. 3D. B Motif enrichment analysis. The Venn diagrams 
illustrated the number of shared motifs among the top 20 enriched motifs in promoters (left) and enhancers (right), ranked by q-values. The 
heatmap showed the fold-enrichment of the top20 motifs using random genome sequences as background. The asterisk indicated that the motifs 
showed more than 1.5-fold enrichment in this pattern compared to the lowest pattern. C The signal intensity plots of TF ChIP-seq for promoters 
(left) and enhancers (right). The x-axis represents the region of TSS ±2kb (left) and the region of enhancer center ±2kb (right)
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Shared enhancers maintain gene expression by recruiting 
abundant CTCF and are functionally important
We further investigated the characteristics and chroma-
tin landscape of Var I and Var II patterns. Strikingly, Var I 
genes were associated with a higher number of enhancers 

across various cell types than those in Var II (Fig. 6A, left 
panel). However, both promoters and enhancers of Var 
II exhibited significantly higher chromatin accessibility 
than those of Var I (Additional file  1: Figure S9), which 
was consistent with their respective gene expression 

Fig. 5  Var regulation pattern contains two distinct E-P regulation subtypes, Var I & Var II. A Examples of Var I (left) and Var II (right) regulation 
subtypes. The gray dashed line denoted the promoter region, while the light blue rectangles represented enhancer regions. The arcs denoted 
E-P regulation relationships defined by ABC model, with blue arcs representing high cell-specific E-P interactions and yellow arcs representing 
E-P interactions present in the majority of cell types. For demonstration purposes, only part of the cell line was shown and the enhancers were 
stitched together and do not represent real distances. The genomic loci of the first and last enhancer were indicated at the bottom. B Definition 
of Shared enhancers, which divided Var regulation pattern into two distinct E-P organization subtypes, Var I and Var II. C The number of genes 
controlled by Var I and Var II regulation subtypes. 3,582 Var genes with RPKM less than 1 or lacking RNA-seq data in all cell types were excluded 
from the analysis. D Expression levels of Var I and Var II genes. The x-axis indicates the cell type order for each gene ranked by its expression value. 
Variation was represented by the relative standard deviation. E GO enrichment analysis. P-values were calculated using Wilcoxon test. *p < 0.05; **p 
< 0.01; ***p < 0.001; n.s., not significant
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trends (Fig.  5D). This indicated chromatin accessibility, 
rather than number of enhancers, plays an important 
role in determining gene expression in Var regulation 
patterns.

We then analyzed the different enhancers in Var I 
separately and found that the variation in enhancer 
number was primarily derived by cell-specific 

enhancers, while the number of Shared enhancers 
remained relatively stable, averaging around one per 
cell type (Fig.  6A, right panel). Significantly, Shared 
enhancers consistently exhibited superior accessibil-
ity compared to other cell type-specific enhancers and 
demonstrated a stronger correlation with gene expres-
sion (Figs.  6B, C). Furthermore, genes with Shared 

Fig. 6  Epigenetic landscape of promoters and enhancers in Var I and Var II patterns. A The average number of different enhancers for Var I and Var II 
genes. B The chromatin accessibility of different enhancers in 77 cell types, measured using DNase-seq or ATAC-seq (if ATAC-seq data is unavailable). 
C The correlation between gene expression and enhancer accessibility. Spearman correlation value were calculated for each gene in 77 cell 
types, and the values with q-value greater than 0.05 were excluded. D Motif enrichment analysis. The Veen plot and heatmap showed the overlap 
and fold-enrichment of the top 20 enriched motifs ranked by q-value in Var enhancers, respectively. The asterisk indicated that the motifs showed 
more than 1.5-fold enriched in this class of enhancers than the lowest class. E The CTCF signal intensity within ±2kb of different Var enhancer 
centers in various cell types. F The signal strength of CTCF within ±25bp of the enhancer center in all regulatory patterns. G The E-P distance 
for different Var enhancers. The E-P distance was defined as the distance from the enhancer center to the TSS. H, I Enrichment of eQTL SNPs H and 
GWAS SNPs I for different Var enhancers, using randomly selected genomic regions as the control. The first number of each label represented 
the number of enhancers that overlapped with eQTL/GWAS SNPs, and the second number represented the total number of enhancers. The group 
“Genome” represented genome randomly selected sequences. J PhastCons conservation scores for different Var enhancers. The y-axis is the mean 
of the conservation scores of all base pairs per enhancer. The x-axis order in A, B is consistent with Fig. 5D. P-values in C, G, J were calculated using 
Wilcoxon test. P-values in H, I were calculated using the binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant
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enhancers in the regulation network exhibited signifi-
cantly higher expression levels than genes exclusively 
regulated by cell-specific enhancers (Additional file  1: 
Figure S10). This suggested that Shared enhancers have 
a greater capacity to activate genes and stably regulate 
genes across most cell types. Motif analysis revealed 
that promoters with different accessibility of Var genes 
have a preference for motifs, with Var I being more 
enriched for CREB1 and TBP, and Var II being more 
enriched for the ETS family, which was consistent with 
the previous results. However, overall, the intensity of 
TF signaling on the Var II promoter was slightly higher 
(Fig. 4B and Additional file 1: Figure S11). The Shared 
enhancers in Var I patterns were significantly enriched 
in CTCF motifs and AP-1 family compared to other 
enhancers (Fig. 6D). This finding was further supported 
by CTCF ChIP-seq data, which confirmed the strong 
signal of CTCF binding on the Shared enhancers in var-
ious cell types. However, the enrichment of AP-1 exhib-
ited no significant difference (Fig.  6E and Additional 
file  1: Figure S12). We also performed CTCF analysis 
for enhancers in other regulatory patterns to inves-
tigate whether similar CTCF enrichment exists. The 
results showed that Var I Shared enhancers exhibited 
the highest enrichment of CTCF binding compared to 
other types of enhancers (Fig. 6F and Additional file 1: 
Figure S12B). Moreover, the E-P regulatory distance of 
Shared enhancers, with a median of 18 kb, was signifi-
cantly shorter than that of other enhancers (Fig.  6G). 
This suggested that Shared enhancers have a prefer-
ence for positioning themselves around Var I genes and 
maintaining interactions with the gene by recruiting 
abundant CTCF in various cell types, thereby regulat-
ing gene expression.

To assess the impact of different Var enhancers in 
gene expression and disease development, we uti-
lized single-nucleotide polymorphisms (SNPs) associ-
ated with diverse phenotypic traits and diseases from 
genome-wide association study (GWAS) [36] and 
expression quantitative trait loci (eQTLs) data. The 
results showed that both eQTLs and GWAS exhibited 
the highest enrichment in Shared enhancers (Figs. 6H, 
I). Additionally, we calculated phastCons scores [37] 
to represent constraint levels of different enhancers, 
supporting the enrichment of SNPs. Consistently, the 
conserved scores of Shared enhancers were signifi-
cantly higher than those of other enhancers (Fig.  6J). 
This indicated that Shared enhancers were functionally 
more important in diseases.

Taken together, these findings suggest that Shared 
enhancers regulate the expression of Var I genes in differ-
ent cells by recruiting CTCF to maintain E-P interactions 
and they are functionally important.

Discussion
Multiple enhancers coordinating the same gene expres-
sion across various cell types is prevalent in genome; 
however the underlying mechnism remains largely unex-
plored. In this study, we developed a computational 
approach to categorize the extensive E-P interactions 
across 77 different cell types into three distinct patterns: 
Specific pattern (Spe), Variable pattern (Var) and Con-
served pattern (Con). These patterns exhibited diverse 
regulatory characteristics, including gene function (cell-
specific to conserved), enhancer and promoter accessibil-
ity (low to high), and gene expression variability (variable 
to stable) (Fig.  7). While a prior study identified active 
genomic regions with stronger transcriptional activity 
based on transcription factor binding affinity and Hi-C 
data [38], it remained unclear how regulatory elements 
such as enhancers control genes with varying transcrip-
tional activity across cell types. Our focus on enhancer-
gene pairs and the utilization of enhancer specificity and 
selectivity across a broad range of cell types allowed us 
to elucidate how the same genes were precisely regulated 
across various cell lineages.

Spe and Con represented two opposite regulatory pat-
terns. The E-P interactions of Spe genes were confined 
to individual cell types, indicating strong cell specificity, 
while the E-P links of Con gene were universally present 
in most cell types, demonstrating pronounced conserva-
tism. Additionally, SPE and Con also exhibit different 
preferences in various epigenetic features. Weakly acces-
sible Spe promoters displayed a preference for the CPB/
CREB1 motif, whereas highly accessible Var and Con pro-
moters favored the EST/YY1 motif. This suggested motif 
preferences at promoters with different accessibility lev-
els [39]. However, unlike promoters, weak Spe enhancers 
displayed comparable AP-1 enrichment strength to Var 
and Con enhancers (Figs. 4B, C and Additional file 1: Fig-
ure S8). This finding aligned with a study conducted in 
Drosophila that demonstrated higher concentrations of 
TFs are required for activation of weakly active hb gene 
promoter transcription [40]. The weak promoter of cell-
specific functional genes potentially serves as a protective 
mechanism against transcriptional abnormalities [41]. In 
contrast, densely conserved enhancers in the Con pattern 
recruit elevated concentrations of transcription factors, 
thus ensuring robust gene expression [42].

Furthermore, Var represented a unique regulatory 
pattern where the same gene is controlled by multiple 
enhancers without co-existing in the same cell type. This 
suggested that Var harbors the largest collection of cell-
specific enhancers, despite the limited number within 
each cell type. Var was further divided into Var I and Var 
II based on the presence of Shared enhancers. Shared 
enhancers establish stable interactions with target genes 
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(Var I genes) in most cells by recruiting abundant CTCF, 
maintaining the basic expression of genes (Figs.  6E, F). 
The distance of Shared E-P link was approximately 20kb, 
suggesting that Shared enhancers possess a spatial advan-
tage over other enhancers, prioritizing their connection 
to genes (Fig. 6G). Other cell-specific enhancers contrib-
uted to the variability of gene expression across different 
cell types. Although the enhancers of Var II exhibited 
similar epigenetic characteristics to Var I other enhanc-
ers, Var II genes maintained a more stable and wide-
spread expression through highly accessible promoters 
(Fig. 5D and Additional file 1: Figure S9). This suggested 
that transcriptional activation of variably expressed 
genes was more dependent on distal enhancers, while 
widely expressed genes were relatively insensitive to dis-
tal enhancers [41]. Overall, Var pattern might represent a 
less costly regulatory mechanism in the genome, utilizing 
a minimum number of enhancers to control the expres-
sion and variation of ubiquitously expressed genes.

Although we have deciphered three regulatory patterns 
of E-P interaction, the impact of interactions between 
TF-enhancer, TF-TF on genes remained unclear. A recent 
study revealed that pioneer factors facilitated CTCF 

occupancy to control the expression of cell identity genes 
[43]. Based on the results of CTCF enrichment and vari-
able accessibility of Var enhancers, we wondered if cell 
type-specific pioneer factors also facilitate the collabora-
tion between other enhancers and Shared enhancers and 
affect their accessibility. This intriguing point requires 
exploration with additional data in future studies.

Conclusion
Here, we develop a computational approach that ena-
bles the quantitative assessment of enhancer specific-
ity and selectivity across diverse cell types. Our findings 
identify three distinct regulation patterns of E-P interac-
tions across various cell types. These patterns highlight 
the heterogeneity of enhancer regulatory mechanisms of 
genes with different functional modules, which provides 
new insights to the subtle mechanisms of enhancers in 
transcriptional regulation.

Methods
Preparation of the E‑P interactions in 77 human cell types
In this study, we selected 77 cell types out of 131 cell types 
and tissues from ABC Model predictions [30]. We retained 

Fig. 7  Schematic diagram illustrating the three E-P regulation patterns across different cell types. Spe pattern is characterized by specific E-P 
interaction limited to individual cell types, showing the lowest gene expression, chromatin accessibility and TF signal intensity. Con is distinguished 
by highly conserved E-P interactions across different cell types, exhibiting the highest levels of gene expression, chromatin accessibility, and TF 
signal intensity across all cell types. Var represents a previously overlooked pattern where the same gene is regulated by distinct enhancers 
across different cell types. Var is further divided into Var I and Var II based on the presence of Shared enhancers. Shared enhancers established 
stable interactions with target genes by recruiting abundant CTCF in most cell types, while other cell-specific enhancers amplified the expression. 
Although Var II lacks Shared enhancer, it maintains stable high gene expression due to high accessibility of both the promoter and enhancers. Three 
different types of enhancers showed similar enrichment of AP-1 motifs, while the promoters show distinct preferences. Specifically, the weakly 
accessible promoters (Spe) prefer binding with TBP and CREB1, while strongly accessible promoters (Var and Con) prefer binding with the EST family



Page 12 of 15Wu and Huang ﻿BMC Genomics          (2024) 25:483 

cell types with availability of various omics profiles and 
removed repetitive cell types. E-P interactions for these 77 
cell types were extracted from ABC Model predictions. We 
specifically focused on E-P links with an ABC score greater 
than 0.015, which were defined as predicted E-P interac-
tions [30]. The genomic coordinates of the peaks and target 
gene information were extracted from the dataset, with no 
further consideration of the ABC score. The dataset used 
in this study can be accessed at https://​mitra.​stanf​ord.​edu/​
engre​itz/​oak/​public/​Nasse​r2021/​AllPr​edict​ions.​AvgHiC.​
ABC0.​015.​minus​150.​ForAB​CPape​rV3.​txt.​gz. Detailed sta-
tistics of E-P interactions, as well as data sources for all cell 
types, can be found in Additional file 2: Table S1 and Addi-
tional file 1: Figure S1.

Compilation of enhancer coordinates
To ensure comparability of enhancers across different cell 
types, we unified their chromatin coordinates. First, we 
gathered the peak coordinates from all cell types into a 
single file. Then, using bedtools [44] merge function with 
default parameters, we merged the overlapping peaks, gen-
erating a peak set with uniform and non-overlapping coor-
dinates. Next, we utilized bedtools intersect function to 
overlap the original enhancers from each cell type with the 
unified peak set. The enhancers that overlapped with uni-
fied peaks were replaced by the unified coordinates. In this 
study, we defined the regions within +/-1kb of any RefSeq 
annotated transcription start site (TSS) as promoters, while 
peaks outside of the promoter regions were considered as 
enhances.

Calculation of SPE score and SEL score
For each gene (g), we generated a binary matrix of size 
M (rows) * N (columns) to represent the E-P interactions 
across various cell types. M represents the number of cell 
types (M = 77 in this study), while N represents the total 
number of enhancers that regulate the gene in all cell types 
based on the E-P interactions defined by ABC model [30]. 
Each element xij in the matrix represents the value at the ith 
row (cell type) and jth column (enhancer):

xij = 0, the enhancer does not link to gene g in this cell 
type;
xij = 1, the enhancer links to gene g in this cell type.

SPE score
We calculated the Enhancer Specificity (SPE) for each 
enhancer e using the following formula:

SPE =
(M−m)+1

M

Here, m represents the number of cell types in which 
the enhancer e regulates the gene g. For the gene g, we 
calculated the SPE score, which is the average of the SPE 
values for all enhancers associated with gene g:

SEL score
We calculated Enhancer Selectivity (SEL) for each cell 
type (c) using the following formula:

Here, n represents the number of enhancers that regu-
lates the gene g in cell type c and N represents the total 
number of enhancers associated with gene g across all 
cell type. For the gene g, we calculated the SEL score, 
which is the relative standard deviation of SEL values 
across all cell types:

These sores, the SPE score and SEL score, provided 
quantitative measures to delineate the enhancer speci-
ficity and selectivity of gene g across various cell types, 
respectively.

Classification of E‑P regulation patterns based on SPE score 
and SEL score
We classified genes based on their SPE score and SEL score 
using K-means clustering. The choice of three clusters were  
primarily determined based on two considerations: the 
clustering patterns by SPE/SEL scores (Fig. S3) and the 
interpretability of functional analysis (Fig. S4). When select-
ing k=3, the SPE/SEL scores and gene function exhibited 
the most distinct and non-repetitive grouping results.

Calculation of the proportion of enhancers overlap with SEs
SEs for 72 cell types were downloaded from SEdb 2.0 
[45]. The cell type IDs corresponding to these SEs can 
be found in Additional file 2: Table S1. We extracted the 
SE coordinate from the downloaded file. We then deter-
mined the the number of enhancers that are located 
within SE regions in each cell type using bedtools inter-
sect function. This allowed us to assess the extent of 
overlap between enhancers and SE regions.

Gene Ontology (GO) enrichment analysis
GO enrichment analysis was performed using the 
enrichGO function of the R package clusterProfiler [46] 
based on the org.Hs.eg.db database. Terms with q-val-
ues less than 0.05 were considered to be significantly 
enriched. The tree clustering of GO term was performed 
using R package enrichplot.

SPE score = Mean of SPE

SEL = n/N

SEL score =
Standard deviation of SEL

Mean of SEL

https://mitra.stanford.edu/engreitz/oak/public/Nasser2021/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
https://mitra.stanford.edu/engreitz/oak/public/Nasser2021/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
https://mitra.stanford.edu/engreitz/oak/public/Nasser2021/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
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Processing of ATAC‑seq, DNase‑seq, and ChIP‑seq data
To calculate the strength of the epigenetic features for 
different enhancers and promoters, we collected bigwig 
files or fastq files of ATAC-seq, DNase-seq, and ChIP-seq 
data from Roadmap Epigenomics Project [47], Encode 
project [48], and published data or studies [30, 49, 
50], respectively. The hg38 bigwig files were converted 
to hg19 using CrossMap [51]. All fastq libraries were 
checked using FastQC , while the low-quality reads and 
adaptor sequences were trimmed by fastp [52] and cuta-
dapt [53]. The trimmed reads were mapped to the human 
reference genome (hg19) using Bowtie2 [54] with default 
parameters. Bam files of duplicated cell types were 
merged using samtools [55] merge function. Duplicated 
reads were removed using the MarkDuplicates function 
from PicardTools. Mitochondria reads were removed 
by samtools view function with the parameter ‘-b –L’. 
Genome blacklist regions [56] were excluded using ’bed-
tools intersect -v’. Then the bam file for each cell type was 
converted into bigiwig file using deepTools [57] bamCov-
erage with options‘–binSize 10 –normalizeUsing BPM’. 
The bigwig file was used to calculate the signal values for 
a given genomic region using the BED-file mode of the 
multiBigwigSummary function of deepTools [57]. Quan-
tile normalization was applied to normalize the signal 
values across different cell types using the preprocess-
Core package. Of note, when calculating the accessibil-
ity of enhancers, all enhancers were unified to a length of 
500bp (peak center +/- 250bp). All download IDs were 
listed in Additional file 2: Table S1.

Processing of RNA‑seq data
To calculate the gene expression, we collected raw read 
count files or TPM files of RNA-seq data from Roadmap 
Epigenomics Project [47], Encode project [48], Cancer 
Cell Line Encyclopedia (CCLE) [58] and published data 
or studies [59–61], respectively. Raw read count files 
were used to calculate TPM. The exon lengths of the 
genes were extracted using exonsBy function from the R 
package GenomicFeatures [62]. Quantile normalization 
was applied to normalize the TPM values across different 
cell types using the preprocessCore package. All download 
IDs were listed in Additional file 2: Table S1.

Motif enrichment analysis
Motif enrichment analysis was performed using the 
HOMER (http://​homer.​ucsd.​edu/​homer/) findMotifsGe-
nome.pl script. Motifs with q-values less than 0.05 were 
considered to be significantly enriched. To determine the 
fold-change of motif enrichment, we calculated the ratio 
between the percentage of target sequence with the motif 
and the percentage of background sequences with the motif.

Classification of Var I and Var II regulation patterns
Genes with low expression levels, defined as a TPM 
value less or equal to 1 were excluded from further 
analysis. Additionally, genes lacking RNA-seq data 
across cell types were also discarded. For the remaining 
genes, we examined their E-P interactions. Enhancers 
that interacted with a gene in more half of the cell types 
were defined as Shared enhancers, while the remaining 
enhancers linking to this gene as other enhancers. This 
regulation pattern containing Shared enhancers was clas-
sified as Var I, while the regulation pattern lacking Shared 
enhancers was classified as Var II.

Visualization of TF ChIP‑seq signals for promoters 
and enhancers
The signal intensity of TF for promoters and enhancers 
were calculated using the computeMatrix reference-point 
function from deepTools with the following parameters 
‘--referencePoint center -a 2000 -b 2000 --binSize 10’. The 
visualization was completed using an in-house R script.

Enrichment analysis of eQTL and GWAS SNPs
The eQTL data and GWAS data were downloaded from 
GTEx [63] and UCSC Table Browser [64], respectively. 
The enhancers overlapped with GWAS SNPs were iden-
tified using bedtools intersect function. The enrichment 
fold-change for enhancers was calculated as follows:

where m represents the number of enhancers with 
SNP loci, M represents the number of genome random 
regions with SNP loci, n represents the total number of 
enhancers, and N represents the total number of genome 
random regions. To ensure comparability, all enhancers 
were unified to a size of 500bp (peak center +/- 250bp). 
The genomic random regions were 500 bp sequences 
randomly selected using ’bedtools shuffle’ in genome-
wide while excluding the promoter regions.

PhastCons conservation score of enhancers
To determine the PhastCons conservation score for 
enhancers, we obtained the PhastCons 100-way verte-
brate conservation score files [37] for all chromosomes 
of hg19 from UCSC Genome Browser [64]. We then con-
verted the download .wig files into .bedgraph files using 
UCSC using wigToBigWig and bigWigToBedGraph. The 
PhastCons score for each enhancer was represented by 
the average of the scores of each base calculated using 
‘bedtools intersect -a peak.bed -b PhastCons.bedgraph’. 
Bases without a PhastCons were excluded from the 
analysis.

m/M

n/N

http://homer.ucsd.edu/homer/


Page 14 of 15Wu and Huang ﻿BMC Genomics          (2024) 25:483 

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​024-​10408-w.

Additional file 1: Supplementary Figures. Figure S1 – Figure S12.

Additional file 2: Table S1. Summary of data used in this study.

Acknowledgements
We thank the labs which produced the public data used in this study.

Authors’ contributions
CW and JH conceived and designed the study. CW performed the compu-
tational analyses. CW and JH wrote the manuscript. All authors read and 
approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(32070635 and 32370586 to J.H.) and the Fundamental Research Funds for the 
Central Universities (20720230068 to J.H).

Availability of data and materials
Predicted E-P interactions of 77 cell types were extracted from ABC Model pre-
dictions. Raw data and processed data of RNA-seq, ATAC-seq, DNase-seq, and 
ChIP-seq were downloaded from Roadmap Epigenomics Project, Encode pro-
ject, Cancer Cell Line Encyclopedia (CCLE) and published studies GSE190792, 
GSE215792, GSE75384, GSE124191, GSE155555, GSE84578, respectively. SEs for 
72 cell types were downloaded from SEdb 2.0. All download IDs were listed in 
Additional file 2: Table S1. The source code for the SPE score and SEL score can 
be found at this link: https://​github.​com/​xmuhu​anglab/​eSele​ctivi​ty.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 31 January 2024   Accepted: 13 May 2024

References
	1.	 Banerji J, Rusconi S, Schaffner W. Expression of a beta-globin gene is 

enhanced by remote SV40 DNA sequences. Cell. 1981;27(2 Pt 1):299–308.
	2.	 Blobel GA, Higgs DR, Mitchell JA, Notani D, Young RA. Testing the super-

enhancer concept. Nat Rev Genet. 2021;22(12):749–55.
	3.	 Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, 

Young RA. Super-enhancers in the control of cell identity and disease. 
Cell. 2013;155(4):934–47.

	4.	 Perry MW, Boettiger AN, Levine M. Multiple enhancers ensure preci-
sion of gap gene-expression patterns in the. P Natl Acad Sci USA. 
2011;108(33):13570–5.

	5.	 Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, Carroll T, Dekker J, Fisher 
AG, Lenhard B, Merkenschlager M. Spatial enhancer clustering and 
regulation of enhancer-proximal genes by cohesin. Genome research. 
2015;25(4):504–13.

	6.	 Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-
connected hubs: Organizational principles and functional roles. Cell Rep. 
2023;42(4):112068.

	7.	 Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, Bradner 
JE, Young RA. Convergence of developmental and oncogenic signaling 
pathways at transcriptional super-enhancers. Mol Cell. 2015;58(2):362–70.

	8.	 Perry MW, Boettiger AN, Levine M. Multiple enhancers ensure precision of 
gap gene-expression patterns in the Drosophila embryo. Proc Natl Acad 
Sci U S A. 2011;108(33):13570–5.

	9.	 Choi J, Lysakovskaia K, Stik G, Demel C, Söding J, Tian TV, Graf T, Cramer 
P. Evidence for additive and synergistic action of mammalian enhancers 
during cell fate determination. Elife. 2021;10:e65381.

	10.	 Bahr C, von Paleske L, Uslu VV, Remeseiro S, Takayama N, Ng SW, Murison 
A, Langenfeld K, Petretich M, Scognamiglio R, et al. A Myc enhancer clus-
ter regulates normal and leukaemic haematopoietic stem cell hierarchies. 
Nature. 2018;553(7689):515–20.

	11.	 Hay D, Hughes JR, Babbs C, Davies JOJ, Graham BJ, Hanssen L, Kassouf MT, 
Marieke Oudelaar AM, Sharpe JA, Suciu MC, et al. Genetic dissection of 
the alpha-globin super-enhancer in vivo. Nat Genet. 2016;48(8):895–903.

	12.	 Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of 
evolutionary novelty. Science. 2008;321(5894):1314.

	13.	 Osterwalder M, Barozzi I, Tissieres V, Fukuda-Yuzawa Y, Mannion BJ, Afzal 
SY, Lee EA, Zhu Y, Plajzer-Frick I, Pickle CS, et al. Enhancer redundancy 
provides phenotypic robustness in mammalian development. Nature. 
2018;554(7691):239–43.

	14.	 Huang J, Li K, Cai W, Liu X, Zhang Y, Orkin SH, Xu J, Yuan GC. Dissecting 
super-enhancer hierarchy based on chromatin interactions. Nat Com-
mun. 2018;9(1):943.

	15.	 Shin HY, Willi M, HyunYoo K, Zeng X, Wang C, Metser G, Hennighausen L. 
Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat 
Genet. 2016;48(8):904–11.

	16.	 Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, 
Snyder MP, Pritchard JK, Kundaje A, Greenleaf WJ, et al. Lineage-specific 
and single-cell chromatin accessibility charts human hematopoiesis and 
leukemia evolution. Nat Genet. 2016;48(10):1193–203.

	17.	 Lin X, Liu Y, Liu S, Zhu X, Wu L, Zhu Y, Zhao D, Xu X, Chemparathy A, Wang 
H, et al. Nested epistasis enhancer networks for robust genome regula-
tion. Science. 2022;377(6610):1077–85.

	18.	 Zhu I, Song W, Ovcharenko I, Landsman D. A model of active transcription 
hubs that unifies the roles of active promoters and enhancers. Nucleic 
acids research. 2021;49(8):4493–505.

	19.	 Kai Y, Li BE, Zhu M, Li GY, Chen F, Han Y, Cha HJ, Orkin SH, Cai W, Huang 
J, et al. Mapping the evolving landscape of super-enhancers during cell 
differentiation. Genome Biol. 2021;22(1):269.

	20.	 Kempfer R, Pombo A. Methods for mapping 3D chromosome architec-
ture. Nature Reviews Genetics. 2020;21(4):207–26.

	21.	 Jin FL, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza 
CA, Ren B. A high-resolution map of the three-dimensional chromatin 
interactome in human cells. Nature. 2013;503(7475):290–4.

	22.	 Cavalli G, Misteli T. Functional implications of genome topology. Nat 
Struct Mol Biol. 2013;20(3):290–9.

	23.	 Robson MI, Ringel AR, Mundlos S. Regulatory Landscaping: How 
Enhancer-Promoter Communication Is Sculpted in 3D. Mol Cell. 
2019;74(6):1110–22.

	24.	 Furlong EEM, Levine M. Developmental enhancers and chromosome 
topology. Science. 2018;361(6409):1341–5.

	25.	 Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T. Dynamic inter-
play between enhancer-promoter topology and gene activity. Nat Genet. 
2018;50(9):1296–303.

	26.	 Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in 
gene expression control. Nat Rev Genet. 2019;20(8):437–55.

	27.	 Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum 
NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, et al. Mediator and 
cohesin connect gene expression and chromatin architecture. Nature. 
2010;467(7314):430–5.

	28.	 Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, 
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive 
mapping of long-range interactions reveals folding principles of the 
human genome. Science. 2009;326(5950):289–93.

	29.	 Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, 
Ho A, Mei PH, et al. An oestrogen-receptor-alpha-bound human chroma-
tin interactome. Nature. 2009;462(7269):58–64.

	30.	 Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Pat-
wardhan TA, Jones TR, Nguyen TH, Ulirsch JC, Lekschas F, et al. 

https://doi.org/10.1186/s12864-024-10408-w
https://doi.org/10.1186/s12864-024-10408-w
https://github.com/xmuhuanglab/eSelectivity


Page 15 of 15Wu and Huang ﻿BMC Genomics          (2024) 25:483 	

Genome-wide enhancer maps link risk variants to disease genes. Nature. 
2021;593(7858):238–43.

	31.	 Zhou J. Sequence-based modeling of three-dimensional genome 
architecture from kilobase to chromosome scale. Nat Genet. 
2022;54(5):725–34.

	32.	 Cao F, Zhang Y, Cai Y, Animesh S, Zhang Y, Akincilar SC, Loh YP, Li X, Chng 
WJ, Tergaonkar V, et al. Chromatin interaction neural network (ChINN): a 
machine learning-based method for predicting chromatin interactions 
from DNA sequences. Genome Biol. 2021;22(1):226.

	33.	 Lu L, Liu X, Huang WK, Giusti-Rodriguez P, Cui J, Zhang S, Xu W, Wen Z, Ma 
S, Rosen JD, et al. Robust Hi-C Maps of Enhancer-Promoter Interactions 
Reveal the Function of Non-coding Genome in Neural Development and 
Diseases. Mol Cell. 2020;79(3):521–34 e515.

	34.	 Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of 
transcription factors in organizing chromatin loops. Nat Commun. 
2022;13(1):6679.

	35.	 Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends 
Genet. 2013;29(10):569–74.

	36.	 Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, 
Flicek P, Manolio T, Hindorff L, et al. The NHGRI GWAS Catalog, a curated 
resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database 
issue):1001–6.

	37.	 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, 
Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved 
elements in vertebrate, insect, worm, and yeast genomes. Genome 
research. 2005;15(8):1034–50.

	38.	 Sahaf Naeini A, Farooq A, Bjoras M, Wang J. IGAP-integrative genome 
analysis pipeline reveals new gene regulatory model associated with 
nonspecific TF-DNA binding affinity. Comput Struct Biotechnol J. 
2020;18:1270–86.

	39.	 Curina A, Termanini A, Barozzi I, Prosperini E, Simonatto M, Polletti S, Sil-
vola A, Soldi M, Austenaa L, Bonaldi T, et al. High constitutive activity of a 
broad panel of housekeeping and tissue-specific cis-regulatory elements 
depends on a subset of ETS proteins. Genes Dev. 2017;31(4):399–412.

	40.	 Wang J, Zhang S, Lu H, Xu H. Differential regulation of alternative promot-
ers emerges from unified kinetics of enhancer-promoter interaction. Nat 
Commun. 2022;13(1):2714.

	41.	 Bergman DT, Jones TR, Liu V, Ray J, Jagoda E, Siraj L, Kang HY, Nasser J, 
Kane M, Rios A, et al. Compatibility rules of human enhancer and pro-
moter sequences. Nature. 2022;607(7917):176–84.

	42	 Tsai A, Alves MR, Crocker J. Multi-enhancer transcriptional hubs confer 
phenotypic robustness. Elife. 2019;8:e45325.

	43.	 Liu Y, Wan X, Li H, Chen Y, Hu X, Chen H, Zhu D, Li C, Zhang Y. CTCF 
coordinates cell fate specification via orchestrating regulatory hubs with 
pioneer transcription factors. Cell Rep. 2023;42(10):113259.

	44.	 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26(6):841–2.

	45.	 Wang Y, Song C, Zhao J, Zhang Y, Zhao X, Feng C, Zhang G, Zhu J, Wang 
F, Qian F, et al. SEdb 2.0: a comprehensive super-enhancer database of 
human and mouse. Nucleic Acids Res. 2023;51(D1):D280–90.

	46.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012;16(5):284–7.

	47.	 Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky 
M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, et al. 
Integrative analysis of 111 reference human epigenomes. Nature. 
2015;518(7539):317–30.

	48.	 Consortium EP. An integrated encyclopedia of DNA elements in the 
human genome. Nature. 2012;489(7414):57–74.

	49.	 Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, 
Grossman SR, Anyoha R, Doughty BR, Patwardhan TA, et al. Activity-by-
contact model of enhancer-promoter regulation from thousands of 
CRISPR perturbations. Nature Genetics. 2019;51(12):1664-+.

	50.	 Ampuja M, Rantapero T, Rodriguez-Martinez A, Palmroth M, Alarmo EL, 
Nykter M, Kallioniemi A. Integrated RNA-seq and DNase-seq analyses 
identify phenotype-specific BMP4 signaling in breast cancer. Bmc 
Genomics. 2017;18:68.

	51.	 Zhao H, Sun ZF, Wang J, Huang HJ, Kocher JP, Wang LG. CrossMap: a 
versatile tool for coordinate conversion between genome assemblies. 
Bioinformatics. 2014;30(7):1006–7.

	52.	 Chen SF, Zhou YQ, Chen YR, Gu J. fastp: an ultra-fast all-in-one FASTQ 
preprocessor. Bioinformatics. 2018;34(17):884–90.

	53.	 Martin M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnetjournal. 2011;17:10–2.

	54.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357–9.

	55.	 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, 
Whitwham A, Keane T, McCarthy SA, Davies RM, et al. Twelve years of 
SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.

	56.	 Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of 
Problematic Regions of the Genome. Sci Rep. 2019;9(1):9354.

	57.	 Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, 
Dündar F, Manke T. deepTools2: a next generation web server for deep-
sequencing data analysis. Nucleic acids research. 2016;44(W1):W160–5.

	58.	 Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim 
S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al. The Cancer Cell Line 
Encyclopedia enables predictive modelling of anticancer drug sensitivity. 
Nature. 2012;483(7391):603–7.

	59.	 Skowron MA, Vermeulen M, Winkelhausen A, Becker TK, Bremmer F, 
Petzsch P, Schönberger S, Calaminus G, Köhrer K, Albers P, et al. CDK4/6 
inhibition presents as a therapeutic option for paediatric and adult germ 
cell tumours and induces cell cycle arrest and apoptosis via canonical 
and non-canonical mechanisms. Brit J Cancer. 2020;123(3):378–91.

	60.	 Wimberger N, Ober F, Avar G, Grau M, Xu WD, Lenz G, Menden MP, 
Krappmann D. Oncogene-induced MALT1 protease activity drives 
posttranscriptional gene expression in malignant lymphomas. Blood. 
2023;142(23):1985–2001.

	61.	 Corces MR, Buenrostro JD, Wu BJ, Greenside PG, Chan SM, Koenig JL, 
Snyder MP, Pritchard JK, Kundaje A, Gkeenleaf WJ, et al. Lineage-specific 
and single-cell chromatin accessibility charts human hematopoiesis and 
leukemia evolution. Nature Genetics. 2016;48(10):1193–203.

	62.	 Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, 
Morgan MT, Carey VJ. Software for computing and annotating genomic 
ranges. PLoS Comput Biol. 2013;9(8):e1003118.

	63.	 Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat 
Genet. 2013;45(6):580–5.

	64.	 Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin 
KM, Schwartz M, Sugnet CW, Thomas DJ, et al. The UCSC Genome 
Browser Database. Nucleic acids research. 2003;31(1):51–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Enhancer selectivity across cell types delineates three functionally distinct enhancer-promoter regulation patterns
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Enhancer specificity and selectivity across diverse cell types delineates three distinct patterns of E-P regulation
	Three regulation patterns control the expression of functionally distinct genes
	The three regulation patterns display distinct epigenetic features
	A subset of Var pattern contains Shared enhancers with stable E-P interactions across the majority of cell types
	Shared enhancers maintain gene expression by recruiting abundant CTCF and are functionally important

	Discussion
	Conclusion
	Methods
	Preparation of the E-P interactions in 77 human cell types
	Compilation of enhancer coordinates
	Calculation of SPE score and SEL score
	SPE score
	SEL score

	Classification of E-P regulation patterns based on SPE score and SEL score
	Calculation of the proportion of enhancers overlap with SEs
	Gene Ontology (GO) enrichment analysis
	Processing of ATAC-seq, DNase-seq, and ChIP-seq data
	Processing of RNA-seq data
	Motif enrichment analysis
	Classification of Var I and Var II regulation patterns
	Visualization of TF ChIP-seq signals for promoters and enhancers
	Enrichment analysis of eQTL and GWAS SNPs

	PhastCons conservation score of enhancers
	Acknowledgements
	References


