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Abstract 

Background  Detecting epistatic interactions (EIs) involves the exploration of associations among single nucleotide 
polymorphisms (SNPs) and complex diseases, which is an important task in genome-wide association studies. The EI 
detection problem is dependent on epistasis models and corresponding optimization methods. Although various 
models and methods have been proposed to detect EIs, identifying EIs efficiently and accurately is still a challenge.

Results  Here, we propose a linear mixed statistical epistasis model (LMSE) and a spherical evolution approach 
with a feedback mechanism (named SEEI). The LMSE model expands the existing single epistasis models such as LR-
Score, K2-Score, Mutual information, and Gini index. The SEEI includes an adaptive spherical search strategy and popu‑
lation updating strategy, which ensures that the algorithm is not easily trapped in local optima. We analyzed the per‑
formances of 8 random disease models, 12 disease models with marginal effects, 30 disease models without marginal 
effects, and 10 high-order disease models. The 60 simulated disease models and a real breast cancer dataset were 
used to evaluate eight algorithms (SEEI, EACO, EpiACO, FDHEIW, MP-HS-DHSI, NHSA-DHSC, SNPHarvester, CSE). 
Three evaluation criteria (pow1, pow2, pow3), a T-test, and a Friedman test were used to compare the performances 
of these algorithms. The results show that the SEEI algorithm (order 1, averages ranks = 13.125) outperformed 
the other algorithms in detecting EIs.

Conclusions  Here, we propose an LMSE model and an evolutionary computing method (SEEI) to solve the optimiza‑
tion problem of the LMSE model. The proposed method performed better than the other seven algorithms tested 
in its ability to identify EIs in genome-wide association datasets. We identified new SNP–SNP combinations in the real 
breast cancer dataset and verified the results. Our findings provide new insights for the diagnosis and treatment 
of breast cancer.

Availability and implementation: https://​github.​com/​scutdy/​SSO/​blob/​master/​SEEI.​zip.
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Background
Complex disorders are defined as diseases that are driven 
by more than one genetic factor, including multiple 
genes, or gene–gene or gene–environment interactions 
[1]. High-throughput genotyping technologies have led 
to the rapid development of genome-wide association 
studies (GWAS), and high-risk loci of many complex dis-
orders have been identified [2]. However, the reported 
loci explain only part of the genetic mechanism, and the 
interactions of single nucleotide polymorphisms (SNPs) 
or epistasis are considered to be important reasons for 
the “missing” heritability [3]. Epistatic interactions (EIs) 
are now considered to be one of the important genetic 
bases for the occurrence and development of complex 
diseases [4]. However, studying EIs is challenging because 
of the large number of SNPs that need to be tested and 
the huge amount of computation that is required [2]. 
Therefore, an effective and efficient epistasis detection 
method for 2-locus or multi-locus SNPs in the whole 
genome will be of great significance.

Many EI detection methods have been proposed. 
These methods can be classified as exhaustive search, 
stochastic search, machine learning, and meta-heuris-
tic methods. The exhaustive search method system-
atically lists all possible candidates and explores all 
possible SNP combinations [5]. Multifactor dimen-
sionality reduction (MDR) [6] is an exhaustive search 
method that simplifies high-dimensional genotype 
combination data into a single dimension. MDR is a 
model-free method that can identify gene–gene inter-
actions in high-order data [7–9]. Extensions of MDR, 
such as MDR-ER [10], Cox-MDR [11], and MOMDR 
[12], have been proposed. Stochastic search meth-
ods such as random search and filtering methods also 
perform well. Random search methods include Bayes-
ian epistatic association mapping (BEAM) [13]. Fil-
tering methods reduce the computational burden by 
discarding large numbers of SNPs, and include Epi-
Miner [14], weighted heuristic anytime search [15], 
FDHEIW [16], LRMW [17], BADTrees [18], SNPRuler 
[19], ensemble learning-based approach (ELSSI) [20], 
EpiReSIM [21], MDSN [22], EpiMC [23], and modeling 
epistatic interaction (MEI) [24]. These methods some-
times screen out potentially meaningful single SNPs 
or SNP–SNP interactions, which reduces their detec-
tion power. Machine learning methods include random 
forest, support vector machine, and neural network 
[25, 26]. Methods based on machine learning gener-
ally have the problem that the results are difficult to 
interpret [27]. Meta-heuristic methods (swarm intelli-
gence algorithms) based on Darwin’s theory of natural 
selection aim to imitate the behavior of various living 
beings in nature to find the optimal solution of complex 

problems. Meta-heuristic algorithms have become 
increasingly popular in solving EI detection problems. 
They include the cuckoo search epistasis (CSE) algo-
rithm [28], MACOED [29], epiACO [30], MP-HS-DHSI 
[31], the extended ant colony optimization (EACO) 
algorithm [32], NHSA-DHSC [33], EIMOABC/D [34], 
Intelligent Privacy-Preserving (IPP) scheme [35], GEP-
EpiSeeker [36], SFMOABC [37], EpiMOGA [38], and 
multi-objective evolutionary computation (MEC) [39].

Many meta-heuristic methods aim to solve a specific 
optimization epistasis model (single-objective model or 
multi-objective model), and therefore cannot be applied 
widely to different optimization epistasis models. For 
example, the CSE algorithm uses only the K2 score 
model, the epiACO algorithm uses only a mixed model of 
K2 score and mutual information (MI), the EACO algo-
rithm combines only MI and the Gini index (GINI), the 
EIMOABC/D algorithm uses only the K2 score and GINI 
as a multi-objective model, and the GEP-EpiSeeker algo-
rithm uses only the K2 score model. These optimization 
epistasis models have their own advantages and disad-
vantages when they are applied to EI problems on dif-
ferent datasets. Therefore, a meta-heuristic method that 
can be widely applied in multiple optimization epistasis 
models is needed to increase the generalization ability of 
the algorithms. When using meta-heuristic methods, the 
balance between exploitation and exploration is key to 
ensure that the algorithm escapes from the local optima 
and ultimately finds the global optimal solution. Further-
more, most meta-heuristic algorithms search in hyper-
cube space (e.g., differential evolution, particle swarm 
optimization, artificial bee colony), which limits their 
search ability. In 2019, we proposed a spherical evolution 
algorithm that uses a super spherical search style that 
has a larger search space than the hypercube search style 
[40]. However, the standard spherical search algorithm 
can easily fall into a local optimum because it lacks a sys-
tematic feedback mechanism. To address these issues, we 
implemented the following innovations to solve the EI 
detection problem.

1.	  Develop a spherical evolution framework that uses 
the spherical search approach based on a feedback 
mechanism. Circle and spherical searches are exe-
cuted alternately to solve any k-order (k ≥ 2) SNP 
combination problem. The individual arrangement 
and parameter adjustment of the search are depend-
ent on a feedback mechanism.

2.	 Develop the feedback mechanism by spherical search 
scale parameter adjustment and a population updat-
ing strategy. The spherical search scale parameter is 
updated according to the winning ability of each indi-
vidual for each generation. The excellent individuals 
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in each generation are saved in a set and the popula-
tion size can be decreased by linear reduction.

3.	 Apply a linear mixed optimization epistasis (LMOE) 
model as the fitness function. The LMOE model sim-
plifies a multi-objective problem as a single-objective 
problem.

We tested the proposed spherical evolution approach 
with a feedback mechanism algorithm that we called 
SEEI on the single optimization epistasis model (single-
objective optimization problem) and the LMOE model 
(multi-objective optimization problem) and verified its 
performance and generalization ability.

The SEEI algorithm (Fig. 1) has four main components: 
spherical search, fitness function, spherical search factor, 
and population updating strategy. The spherical search 
components (Xi, Xbest, Xr1, Xr2) are used for two spher-
ical searches. The fitness function uses the LMOE model, 
which can be used for single-objective and two-objective 
optimization models because it converts two-objective 
optimization problems to single-objective optimiza-
tion problems. The spherical search factor can be con-
sidered as an adaptive parameter adjustment strategy in 
which the search factor parameter controls the spherical 
search scale; large scale values will make the search for 
large search space, whereas small scale values will make 

the search for small search space. Therefore, adaptive 
adjustment of the search scale is a key task of the SEEI 
algorithm.

Experimental results and analysis
We tested the performance of the SEEI approach on 60 
simulated datasets in various types of disease models 
and a real breast cancer dataset, and compared its per-
formance with those of seven state-of-the-art algorithms, 
namely CSE [28], EACO [32], EpiACO [30], FDHEIW 
[16], MP-HS-DHSI [31], NHSA-DHSC [33], and 
SNPHarvester [41], on the same datasets. To ensure the 
fairness of the comparisons, we used the parameter set-
tings of the algorithms from the original articles. Details 
of each algorithm are provided in Supplementary Files. 
To fully evaluate the performance of these algorithms in 
different disease models, three evaluation criteria were 
used, namely Power1 , Power2 , and Power3 . Power1 is 
defined as Power1 = #S

#T  , where #T is the number of data-
sets generated by the same model (#T = 100 in our study), 
#S is the number of pathogenic datasets found from #T 
datasets. (The best SNP combination can be successfully 
detected in the dataset.) Power2 uses the G-test statistical 
method [33, 42] to test the significance level of candidate 
SNP combinations under Power1 . G-test is a likelihood 
ratio test asymptotically similar to Pearson’s chi-square 

Fig. 1  Framework of the SEEI algorithm. (1) Spherical search: spherical search operator in each generation. (2) Fitness function: LMOE model is used 
for LR and GINI. (3) Spherical search factor: arrows with different directions and lengths indicate the different search scales in each generation. 
(4) Population updating strategy: number of yellow balls in the rectangle area decrease gradually, indicating that the population size gradually 
decreased by a linear function. Different colored balls in the circle area indicate excellent individuals in each generation. The population updating 
strategy enhances the diversity of the population
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and superior to the approximation to the theoretical chi-
square distribution. Power3 uses the balanced accuracy 
[7] and predictive error rate [43] of the MDR classifier 
under Power1 . The three evaluation criteria were used to 
evaluate the ability of SEEI and the seven selected opti-
mization algorithms to detect EIs.

Parameter setting for the eight algorithms tested
For a fair evaluation of the comparisons, we used the 
running number of the fitness function with MAX_FES 
set as the maximum running number of the fitness func-
tion. The parameters of the eight algorithms were from 
the original papers. MAX_FES was set as: 2-order MAX_
FES = 20000, 3-order MAX_FES = 20000 × 3, and 4-order 
MAX_FES = 20000 × 4. The parameter setting of each 
algorithm are as follows:

(1)	 EACO: AntNumber = 200, evaporation = 0.3, Tau0 = 1,  
Alfa = 1, Beta = 1. AntNumber is the number of ants 
in the population, the initial pheromone Tau0 was 
set to 1, and Alfa and Beta, which determine the 
weights of pheromone and heuristic information, 
were set to 1. The evaporation coefficient of phero-
mones was set to 0.3.

(2)	 MP-HS-DHSI: HMS = 10 for each HM, HMCR = 0.98, 
PAR = 0.35, threshold p-value for G-test = 1/Cnk, pre_
error_rate = 0.45. Harmony memory (HM) is com-
posed of harmonies. Harmony memory size (HMS) 
is the population size, harmony memory considering 
rate (HMCR) is the crossover rate, pitch adjusting rate 
(PAR) is the selection rate for different dimensions 
in each individual, and pre_error_rate is the MDR 
parameter.

(3)	 NHSA-DHSC: HMS = 50, HMCR = 0.95, PAR = 0.35. 
Harmony memory (HM) is composed of harmonies. 
HMS is the population size, HMCR is the crosso-
ver rate, and PAR is the selection rate for different 
dimensions in each individual.

(4)	 epiACO: AntNumber = 200; τ0 = 1, η = 1, α = 1, β = 1, 
evaporation coefficient ρ = 0.2, constant ξ = 0.3. Ant-
Number is the number of the ants in the population, 
τ0 is the pheromones of the path from position i to 
position j at iteration t. The heuristic information of 
the path from position i to position j is denoted as η. 
α and β are parameters that control the importances 
of pheromones and heuristic information respec-
tively. The evaporation coefficient of pheromones 
was set to 0.2. Constant ξ is set as 0.3.

(5)	 FDHEIW: K = epi_num, Candatiesize = 2 × epi_num. K 
is the number of SNP combination and Candatiesize is 
the number of candidate solution sets.

(6)	 SNPHarvester: SuccessiveRun = 50. SuccessiveRun 
is the number of searches in each iteration.

(7)	 CSE: Fraction of eggs discarded each genera-
tion = 0.25, maximum number of steps to take in a 
levy flight = 1, number of groups = 5, and number of 
nests = 100 (population size).

(8)	 SEEI: pop_size = 50, p_best_rate = 0.11, arc_rate = 2.6, 
memory_size = 6, min_pop_size = 4. pop_size is the 
number of the population, p_best_rate is the rate of 
the best solutions in the population, arc_rate is the 
number of a population of outstanding individuals in 
history, memory_size is the search factor number in 
memory, and min_pop_size is the population size at 
the end of the final iteration.

Experiments on simulated datasets
To comprehensively compare the eight algorithms (SEEI, 
EACO, EpiACO, FDHEIW, MP-HS-DHSI, NHSA-
DHSC, SNPHarvester, CSE), we built 12 disease models 
with marginal effect, 30 disease models without marginal 
effect, and 8 random disease models. Details of the dis-
ease models are provided in Supplementary files.

Disease models with marginal effect (DMEs)
Twelve DMEs were used to evaluate the performances of 
SEEI and the seven other algorithms for detecting EIs [9, 
44, 45]. The DMEs were designed according to the inter-
action structure with different diseases. Details of the 
multi-locus penetrances are presented in Table  S1. The 
heritability (h2) values were between 0.031 and 0.008. 
In each disease model, 100 datasets were randomly gen-
erated using GAMETES software, which can generate 
datasets containing a specific two-locus EI with random 
architectures. Each dataset included an interacting SNP 
pair (M0P0–M1P1) that was generated according to the 
disease model setting, and other SNPs are generated with 
minimum allele frequency (MAF) selected uniformly 
in (0.05, 0.5). For each DME, we simulated 100 replicate 
datasets with sample sizes 800 and balanced cases and 
controls (DME-1–DME-6), and sample sizes of 1600 and 
balanced cases and controls (DME-7–DME-12), and a 
total of 1000 SNPs. Power1, Power2, and Power3 values 
for the eight algorithms in the 12 DMEs were shown in 
Fig. 2. SEEI had higher Power1, Power2, and Power3 than 
the other seven algorithms in the 12 DMEs, indicating 
that the search ability of SEEI was better than that of the 
other seven algorithms. We also verified the robustness 
of the SEEI algorithm and found that it outperformed the 
other seven algorithms when the number of samples was 
increased from 800 (DME-1–DME-6) to 1600 (DME-7–
DME-12). Indeed, the performances of all the other algo-
rithms, except for that in DME-10, decreased when the 
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number of samples was 1600. NHSA-DHSC and MP-HS-
DHSI outperformed all the other algorithms, except SEEI.

Disease models without marginal effect (DNMEs)
Thirty 2-locus and pure disease models without marginal 
effects (DNMEs) were from a previous study [19]. The 
simulated datasets were generated with various parame-
ter settings (heritability (h2) and MAF) using GAMETES 
[44]. Each dataset contained a specific 2-locus interact-
ing SNP pair (M0P0–M1P1) with random architectures. 
The details of the multi-locus penetrances are presented 
in Table S2. The h2 values controlled the phenotypic vari-
ation of all disease models and ranged from 0.025 to 0.2, 
and the MAFs were 0.2 and 0.4. Each disease model was 
generated using 100 datasets consisting of 1000 SNPs, 
two of which (M0P0 and M1P1) were the specific SNPs. 
The other SNPs were generated with MAFs selected uni-
formly in (0.05, 0.5). For each selected DNME, we simu-
lated 100 replicate datasets with sample sizes of 800 and 
balanced cases and controls, and a total of 1000 SNPs. 
We used 30 different DNMEs to fully test the detection 
ability of the eight algorithms. The performances of SEEI 
and the other seven algorithms in the 2-order DNMEs 
(DNME-1–DNME-30) are shown in Fig.  3. The SEEI 
algorithm outperformed the other seven algorithms, 
achieving the highest power among the DNMEs. These 
results again demonstrate the effectiveness of the SEEI 
algorithm in screening for significant SNP combinations.

Random disease models
We used GAMETES to generate 100,000 random, strict, 
and pure disease models for each of the different combi-
nations of genetic constraints that were obtained using 
different two-locus interacting SNP pairs (M0P0–M1P1); 
h2 values of 0.001, 0.025, 0.05, and 0.1, and MAFs of 0.2 
and 0.4, with a varying population prevalence. For each 
setting, 100,000 disease models were ranked according to 
the ease of detection measure (EDM), and the eight dis-
ease models with the lowest EDM values were selected 
as the random disease models for data simulation (Ran-
dom-1–Random-8). For each selected disease model, 
we simulated 100 replicate datasets with sample sizes 
800 with balanced cases and controls and a total of 1000 
SNPs. Each dataset contained one pair of highly inter-
active SNPs (M0P0–M1P1), and the other SNPs were 
generated with MAFs selected uniformly in (0.05, 0.5). 
Power1, Power2, and Power3 were higher for SEEI than 
they were for the other seven algorithms (Fig. 4), except 
in Random-2, where Power1 and Power3 were smaller 
for SEEI than they were for MP-HS-DHSI and NHSA-
DHSC. In Random-1, the power of the eight algorithms 
was < 0.4, indicating that many algorithms were unable to 
detect the best SNP combination. For SEEI and NHSA-
DHSC, Power1 was > 0.3 and < 0.2, respectively, implying 
that SEEI significantly outperformed NHSA-DHSC. In 
Random-2, only SEEI, MP-HS-DHSI, and NHSA-DHSC 
detected the best SNP combination.

Fig. 2  Performances of SEEI and seven other algorithms in 12 2-order disease models with marginal effect (DMEs). Power1, Power2, and Power3 
were used to evaluate the performances. DME-1–DME-6, number of samples 800; DME-7–DME-12, number of samples 1600
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High‑order disease models (HODMs)
We selected the additive models in literature [46] that 
define EIs with marginal effects. All the simulation 
configurations and datasets are publicly available at 
Github. (https://​github.​com/​UDC-​GAC/​epist​asis-​simul​
ation-​data). Details of the multi-locus penetrances are 

presented in Table S3. The criteria to create penetrance 
tables of third and fourth-order were MAF values of 0.10, 
0.25, and 0.40, and h2 values of 0.10, 0.25, 0.50, and 0.80 
with prevalence > 1E − 06. From each penetrance table, 
100 datasets were generated containing 500 SNPs from 
2000 individuals (1000 cases and 1000 controls). We 

Fig. 3  Performances of SEEI and seven other algorithms in 30 2-order disease models without marginal effects (DNMEs). Power1, Power2, 
and Power3 were used to evaluate the performances. DNME-1–DNME-30, number of samples 1600

Fig. 4  Performances of SEEI and seven other algorithms in eight 2-order disease models (Randoms). Power1, Power2, and Power3 were used 
to evaluate the performances. Random-1–Random-8, number of samples 1600

https://github.com/UDC-GAC/epistasis-simulation-data
https://github.com/UDC-GAC/epistasis-simulation-data
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generated 10 simulated datasets; six for 3-order mod-
els and four for 4-order models. The performances of 
SEEI and the other seven algorithms on the 3-locus and 
4-locus models are shown in Fig. 5. Most of the methods 
produced the highest power value (i.e., 1.0) on the high-
order data models, confirming that these HODMs easily 
detected SNP–SNP interactions. SEEI, FDHEIW, MP-
HS-DHS, and SNPHarvester produced the best perfor-
mances, whereas CSE performed the worst. These results 
show that among the 3-locus and 4-locus models, SEEI 
was highly effective in detecting high-order interactions.

Comparison of the different disease models
To comprehensively validate the performance of our 
proposed method, the four disease models, DMEs, 
DNMEs, Random models, and HODMs were used to 
compare SEEI and the seven state-of-the-art algorithms, 
EACO, MP-HS-DHSI, NHSA-DHSC, epiACO, FDHEIW, 
SNPHarvester, and CSE. In the 12 DME models (Fig. 2), 
SEEI, NHSA-DHSC, MP-HS-DHSI, and FDHEIW had 
better pow1, pow2, and pow3 values than the other algo-
rithms. In addition, the power values of SEEI increased 
when the number of samples was increased from 800 
(DME-1–DME-6) to 1600 (DME-7–DME-12). Con-
versely, the power values of some methods, such NHSA-
DHSC, decreased when the number of samples was 

increased from 800 (DME-1–DME-6) to 1600 (DME-7–
DME-12). In the 30 DNME models, SEEI, NHSA-DHSC, 
MP-HS-DHSI, epiACO, and EACO had the best pow1, 
pow2, and pow3 values (Fig. 3). The epiACO and EACO 
algorithms had better power values in the DNME models 
than they had in the DME models, whereas the FDHEIW 
had better power values in DME models than it had in 
DNME models. In the eight random disease models, 
CSE, FDHEIW, and SNPHarvester had very low power 
values and failed to detect the epistatic interaction pairs, 
whereas SEEI, NHSA-DHSC, MP-HS-DHSI, epiACO, 
and EACO had better power values (Fig.  4). Only the 
SEEI, NHSA-DHSC, and MP-HS-DHSI algorithms had 
high stable power values in the 2-order DME, DNME, 
and random disease models. In the 10 high-order disease 
models (HODMs), only SEEI, FDHEIW, MP-HS-DHS, 
and SNPHarvester had high power values (Fig.  5). The 
detection ability of some methods, such as NHSA-DHSC, 
decreased from the 2-order models to the high order 
models, whereas the detection ability of FDHEIW, MP-
HS-DHS, and SNPHarvester increased from the 2-order 
models to the high order models. This result indicates 
that FDHEIW, MP-HS-DHS, SNPHarvester, and NHSA-
DHSC are more suitable for certain disease models. SEEI 
performed better than all the other seven methods in 
the 2-order and a high order models, demonstrating that 

Fig. 5  Performances of SEEI and seven other algorithms in 10 high-order disease models (HODMs). Power1, Power2, and Power3 were used 
to evaluate the performances. HODM3-1–HODM3-6, 3-order disease models; HODM4-1–HODM4-4, 4-order disease models. HODM3-1–HODM4-4, 
number of samples 500
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SEEI has strong robustness and can be used for many dif-
ferent types of disease models.

Comprehensive analysis of the 60 disease models
The heap map (Fig. 6) shows the detection powers of the 
seven algorithms and the SEEI algorithm with 10 epista-
sis optimization methods in the 60 disease models. SEEI 
with 10 epistasis optimization methods outperformed the 
other seven algorithms in the 50 2-order disease models, 
with the exception of MP-HS-DHS and NHSA-DHSC 

in the Random-2 model, which outperformed the other 
methods. In the 10 high-order disease models, SEEI (with 
9 of the epistasis optimization methods), FDHEIW, MP-
HS-DHS, and SNPHarvester outperformed the other 
algorithms. The results also show that the SEEI algorithm 
had the best performance in the 60 disease models with 
not only the single epistasis optimization models but also 
with the linear maxed epistasis optimization models.

The Power1 values for the eight algorithms, SEEI, 
EACO, EpiACO, FDHEIW, MP-HS-DHSI, NHSA-DHSC, 

Fig. 6  Heap map of 17 algorithms in the 60 disease models. The algorithms include the seven algorithms tested (CSE, EACO, EpiACO, FDHEIW, 
MP-HS-DHS, NHSA-DHSC, SNPHarvester) and the SEEI algorithm with 10 epistasis optimization methods. The disease models were the DMEs, 
DNMEs, Random, and HODMs. The 10 SEEI methods included four single epistasis optimization methods (LR, K2, MI, GINI) and six combination 
epistasis optimization methods (LR-K2, LR-MI, LR-GINI, K2-MI, K2-GINI, MI-GINI). Power1 was used to evaluate the performances. Red, white, and blue 
blocks indicate low, moderate, and high power, respectively
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SNPHarvester, and CSE, in the 60 disease models by 
T-test are shown in Table 1. The results show that SEEI 
outperformed the other seven algorithms. The average 
ranks of the 17 algorithms by Friedman test [47] are listed 
in Table 2. The detection power of the 10 SEEI epistasis 
optimization methods outperformed those of the other 
seven algorithms (p-value = 7.56E − 12; Table 3), showing 
that SEEI had better robustness and scalability than the 
other methods. This finding suggests that the SEEI algo-
rithm may be applicable to other epistasis optimization 
models.

Because of the long running time required for high-
order data, the gap in the running times between the 
high-order disease models for the other disease models 
was very large, and therefore we used the logarithm of the 
running times of all the algorithms for a better compari-
son. Compared with the other seven algorithms, the SEEI 
algorithm (MI) had the shortest running time in most of 
the disease models (Fig.  7). Although the running time 
of the SEEI (MI) algorithm was slightly longer than that 
of the SNPHarvester algorithm in DME-3, DME-5, Ran-
dom-43, Random-44, and Random-50, and slightly longer 
than the MP-HS-DHSI and SNPHarvester algorithms in 
the high-order disease models, the average running time 
of SEEI was the shortest among the 60 disease models, 
implying that the SEEI algorithm was more adaptable to 
different disease models and had a lower computational 
burden than the other algorithms. We believe that the 
SEEI algorithm has promise in detecting disease-causing 
SNP combinations and has a broad future.

Experiments on a real dataset
We used the breast cancer (BC) dataset of the Welcome 
Trust Case Control Consortium (WTCCC) project as 
the real dataset to evaluate the ability of SEEI to detect 
EIs [48]. Mutual information (MI) was used as the fitness 
function of SEEI. BC is a complex disease and its etiol-
ogy is not fully understood [49]. The BC dataset included 
15,436 SNPs from 1045 patients with BC and 1438 nor-
mal individuals from the 1958 birth cohort. Samples with 
SNP genotype deletion rates ≥ 2% were excluded, and 
for a SNP, if the genotype deletion rate of all the samples 
was ≥ 5%, or its p-value (Hardy–Weinberg equilibrium) 
was < 0.0001 in the controls, or the MAF was < 0.1, the 
SNP was excluded. After quality control, 3386 SNPs from 
1045 patient and 1329 control samples in the BC dataset 
were used in this study.

The population size of SEEI was set to 400 and the 
maximum number of iterations was set to 5000. The SEEI 
algorithm identified some 2-way and 3-way SNP com-
binations that may be associated with BC (Table  4 and 
Fig.  8). The single SNP (rs1402954) that was detected 
most frequently in the two-way SNP combinations is 

located in FBXO3 on chromosome 11. FBXO3 is involved 
in ΔNp63α degradation to empower TGF-β signaling in 
promoting tumor metastasis and the TβRI–FBXO3–
ΔNp63α axis is critically important in BC development 
and its clinical prognosis [50]. SNP rs2290501 is located 
in HSPG2 on chromosome 1. HSPG2 is involved in 
tumor development and progression, and, in BC, HSPG2 
was fragmented or completely lost in epithelial basement 
membrane, with a marked increase in HSPG2 abundance 
in the stroma [51]. SNP rs11211247 is located in MAST2 
on chromosome 1. Gene rearrangements in the micro-
tubule-associated serine-threonine kinase (MAST) gene 
family have been identified in 5%–7% of invasive BCs 
[52]. SNP rs3765966, which is located in CA6 on chro-
mosome 1, was detected more than once in 3-way SNP 
combinations. CA6 is highly expressed by many BCs [53]. 
SNP rs6662382 was also detected in 3-way SNP combi-
nations. The relationship of rs6662382 with BC has not 
been reported so far, implying that this may be a new 
SNP combination associated with BC. The SNP interac-
tion network for BC is shown in Fig. 8.

Discussion
We proposed a spherical evolution with feedback mecha-
nism method called SEEI to effectively detect 2-order 
and high-order epistasis from genome-wide case–control 
data. To verify the robustness and scalability of SEEI, we 
used a linear mixed statistical epistasis model that con-
verts the multi-objective problem to a single-objective 
problem. SEEI was compared with seven state-of-the-art 
algorithms (EACO, EpiACO, FDHEIW, MP-HS-DHSI, 
NHSA-DHSC, SNPHarvester) for four single epistasis 
models (LR, K2, MI, GINI) and six linear mixed statisti-
cal epistasis models (LR-K2, LR-MI, LR-GINI, K2-MI, 
K2-GINI, MI-GINI). We found that SEEI outperformed 
the other seven comparison methods for detection accu-
racy on simulated and real datasets. Furthermore, SEEI 
showed strong robustness and scalability, indicating that 
it can be used for both single and linear mixed statistical 
epistasis models. The proposed SEEI method performed 
well in identifying EIs, in particular, in solving multiple 
different epistasis optimization models, indicating that 
the SEEI algorithm has good generalization ability. How-
ever, the good performance of SEEI in all disease mod-
els or all real datasets cannot be guaranteed. We found 
that the SEEI algorithm still falls into local optima when 
tackling different kinds of data. To overcome these prob-
lems, further focus on the feedback mechanism of meta-
heuristic methods, multi-subpopulation search methods, 
and the ensemble learning framework for different algo-
rithms may help to greatly improve the generalization 
ability of algorithms in the future.
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Table 1  Power1 values for eight algorithms in 60 disease models by T-test

EACO% EpiACO% FDHEIW% MPHSDHSI% NHSADHSC% SNPHarverster% CSE% SEEI%

D01 3 2 1 13 41 0 1 90
D02 2 4 6 25 45 2 2 75
D03 0 2 6 26 43 0 2 55
D04 1 1 28 44 48 20 6 72
D05 2 5 1 12 39 1 0 59
D06 3 5 1 16 36 0 2 85
D07 2 3 2 15 35 0 3 93
D08 3 7 12 24 43 4 2 98
D09 3 3 15 34 48 5 1 96
D10 2 2 84 90 87 78 4 99
D11 3 5 0 13 31 0 1 93
D12 4 4 1 13 37 1 2 96
D13 5 4 0 14 27 2 1 95
D14 4 8 0 24 27 1 1 94
D15 1 5 0 12 22 1 1 97
D16 1 3 1 17 24 2 1 90
D17 7 4 0 9 26 2 1 94
D18 4 4 0 17 20 2 1 94
D19 5 5 1 14 22 1 0 97
D20 2 6 0 19 23 7 1 93
D21 2 1 0 15 19 1 1 94
D22 1 2 0 15 19 1 2 95
D23 3 6 1 8 27 1 4 94
D24 1 1 0 10 29 0 1 96
D25 2 3 4 26 28 4 2 99
D26 3 1 1 15 24 3 1 96
D27 5 4 3 14 22 4 0 91
D28 7 6 0 16 18 3 0 94
D29 8 8 0 11 16 1 2 94
D30 5 6 0 16 20 1 1 95
D31 3 2 0 13 16 4 1 92
D32 4 4 0 14 25 2 1 93
D33 6 0 0 9 21 0 0 91
D34 4 5 0 20 28 3 3 92
D35 4 6 1 14 25 2 0 94
D36 6 7 0 11 21 1 0 91
D37 1 4 0 16 24 0 0 94
D38 4 5 0 16 18 1 0 98
D39 4 5 0 10 15 2 3 94
D40 2 2 0 21 25 2 1 95
D41 9 1 0 18 21 1 1 95
D42 3 2 0 13 19 1 0 96
D43 0 0 0 13 19 1 1 33
D44 0 0 0 22 25 0 0 6

D45 7 4 2 16 25 3 0 96
D46 3 4 0 15 18 2 1 95
D47 5 5 1 13 26 2 2 90
D48 7 6 0 15 16 0 0 91
D49 9 9 0 16 17 1 0 92
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Methods
Related work
In the last four years, the EI identification problem has 
developed rapidly. The main focus has been on how to 

establish an epistasis interaction model and how to solve 
the model. Stochastic search methods and meta-heuris-
tic methods are still hot topics in current research. Some 
models and search approaches for stochastic search 
methods have been proposed. Sun et  al. [22] proposed 
a module detection method in which a SNP network 
was constructed and a node was comprehensively evalu-
ated by the topological characteristics of the neighbor-
hood. Wang et  al. [23] proposed a matrix factorization 
based multiple clustering algorithm to generate multi-
ple diverse clusters and then used Jaccard similarity to 
obtain candidate sets. David et al. [24] proposed a model 
that scores candidate SNP sets by computing maximum 
likelihood distribution for the observed phenotypes. 
Different from stochastic search method, meta-heuris-
tic method is the general term for several optimization 
algorithms that are inspired by the Darwinian princi-
ples of nature’s capability to evolve organisms that are 
well adapted to their environment. Because of its strong 
search ability, many meta-heuristic methods have been 
used to solve the EI identification problem. Tuo et  al. 
[31] proposed a multi-population harmony search (HS) 
algorithm and multiple criteria (Bayesian network-based 
K2-score, Jensen-Shannon (JS) divergence, likelihood 
ratio (LR) and normalized distance with joint entropy 
(ND-JE)) were adopted by four harmony memories to 
improve its ability to discriminate diverse disease mod-
els. Sun et  al. [32] detected epistatic interactions based 
on the ant colony optimization (ACO) algorithm, the 
highlights of which were the introduced heuristic infor-
mation, fitness function, and a candidate solutions 
filtration strategy. Two functionally complementary fit-
ness functions, mutual information, and the Gini index, 
were combined to effectively evaluate the associations 

Table 1  (continued)

EACO% EpiACO% FDHEIW% MPHSDHSI% NHSADHSC% SNPHarverster% CSE% SEEI%

D50 3 2 0 16 17 0 2 52
D51 34 84 100 100 93 100 0 100
D52 4 78 100 100 100 100 0 100
D53 38 87 100 100 82 100 0 100
D54 8 37 100 100 99 100 0 100
D55 38 88 100 100 89 100 0 100
D56 8 31 100 100 100 100 0 100
D57 7 11 100 100 3 100 0 100
D58 15 32 100 100 0 100 0 100
D59 2 1 100 100 16 100 0 100
D60 0 0 100 100 73 100 0 100

3.04e-44 4.97e-34 2.30e-21 5.16e-20 7.59e-23 1.170e-21 6.42e-45 T-test
P-values

Rows D01–D60 contain Power1 percentages in the 60 disease models. Bold font indicates the best Power1 values among the eight algorithms. The last row shows the 
T-test p-values for SEEI measured against the other seven algorithms

Table 2  Average ranks by Friedman test analysis of the 17 
algorithm in the 60 disease models

Order Algorithm Averages ranks

1 MI 13.125

2 LR 12.81

3 LR-GINI 12.75

4 LR-MI 12.53

5 MI-GINI 12.15

6 LR-K2 12.03

7 K2-MI 11.73

8 K2 11.56

9 GINI 11.04

10 K2-GINI 10.80

11 MP-HS-DHSI 7.35

12 NHSA-DHSC 6.92

13 SNPHarvester 4.50

14 EpiACO 3.99

15 FDHEIW 3.85

16 EACO 3.65

17 CSE 2.20

Table 3  Statistics of the Friedman test analysis for the 17 
algorithms

Method Statistical value p-value

Friedman test 621.116 7.56E − 12
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between SNP combinations and the phenotype. Li et al. 
[34] proposed and formulated an epistatic interaction 
multi-objective artificial bee colony algorithm based on 
decomposition (EIMOABC/D) to address those prob-
lems for genetic interaction detection in GWAS. First, 
to direct the genetic interaction detection, two objec-
tive functions were formulated to characterize various 
epistatic models, and a rank probability model was pro-
posed to sort each population into different nondomi-
nation levels based on the fast nondominated sorting 
approach. Wang et al. [35] proposed a method based on 
the ACO algorithm to detect SNP–SNP interactions for 
GWAS, an IPP scheme. Initially, a multi-objective search 
algorithm was designed to discover candidate SNP sets 

related to a disease phenotype, which used a Differential 
Privacy method by disturbing the multi-objective func-
tion to construct a rational epistatic privacy protection 
strategy. Peng et  al. [36] proposed several tailor-made 
chromosome rules to describe SNP combinations, and 
incorporated Bayesian network-based fitness evalua-
tion into the evolution of tailor-made chromosomes to 
find candidate SNP combinations, and adopted the chi-
square test to identify optimal solutions from suspected 
SNP combinations. Gu et  al. [37] proposed a multi-
objective artificial bee colony (ABC) algorithm based 
on the scale-free network (SFMOABC), which incorpo-
rated the scale-free network into the ABC algorithm to 
guide the update and selection of solutions. In addition, 

Fig. 7  Running times and average running time for the eight algorithms in 60 disease models. The proposed SEEI algorithm effectively reduced 
the computational burden and had better detection ability than most similar algorithms

Table 4  Significant two-way and three-way SNP combinations identified in the WTCCC breast cancer dataset

SNP Combinations Chromosome and Related Genes Interaction G-test p-Value

rs2290501;rs11211247 Chr1:HSPG2;Chr1:MAST2 0  < 1E-100

rs1402954;rs13376679 Chr11:FBXO3;Chr1:STIL 0  < 1E-100

rs12138368;rs3765966 Chr1:CATSPER4;Chr1:CA6 0  < 1E-100

rs2290501;rs3765675 Chr1:HSPG2;Chr1:TNNI3K 0  < 1E-100

rs2273970;rs6669367;rs3765675 Chr1:GALNT2;Chr1:DTL;Chr1:TNNI3K 0  < 1E-100

rs3765966;rs1402954,rs10798885 Chr1:CA6;Chr11:FBXO3;Chr1:COL16A1 0  < 1E-100

rs13376679;rs3765966;rs6662382 Chr1:STIL;Chr1:CA6;Chr1:OR10T2 0  < 1E-100

rs6662382;rs1402954;rs13070515 Chr1:OR10T2;Chr11:FBXO3;Chr3:LRRC15 0  < 1E-100

rs13376679;rs12138368;rs1800440 Chr1:STIL;Chr1:CATSPER4;Chr2:CYP1B1 0  < 1E-100

rs3766160;rs2791494;rs11939575 Chr1:CELA2B;Chr1:CLCA1;Chr1:FAT1 0  < 1E-100

rs3795375;rs3766163;rs3738372 Chr1:MAP3K21;Chr1:RSC1A1;Chr1:CAPN2 0  < 1E-100

rs13376679;rs3765675;rs2072751 Chr1:STIL;Chr1:TNNI3K;Chr1:VWA5B1 0  < 1E-100
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SFMOABC used the mutual information (MI) and the 
K2-Score of the Bayesian network as objective func-
tions, and the opposition-based learning strategy was 
used to improve the search ability. Chen et al. [38] pro-
posed a multi-objective genetic algorithm (EpiMOGA) 
for SNP epistasis detection. The K2 score based on 
the Bayesian network criterion and the Gini index of 
the diversity of the binary classification problem were 
used to guide the search process of the genetic algo-
rithm. M. G-CJ et  al. [39] proposed the application of 
two of the most successful multi-objective evolutionary 
algorithms to solve the binary classification problem, 
namely the reference-point based Many-objective Fast 
Non-dominated Sorting Genetic Algorithm (NSGA-III) 
and a Multi-objective Evolutionary Algorithm based 
on Decomposition with Dynamical Resource Alloca-
tion (MOEA/D-DRA). Yang et al. [12] proposed a novel 
ensemble learning-based approach (ELSSI) that can 
significantly reduce the bias of individual detectors and 
their computational load. ELSSI randomly divides SNPs 
into different subsets and evaluates them by multi-type 
detectors in parallel.

Clearly, a large number of many-objective meta-heu-
ristic methods have been used to solve EI problems. The 
classical ABC algorithm, genetic algorithm, ant colony 
optimization, harmony search algorithm, and many 
epistasis interaction models (e.g., K2-score, JS, LR, MI) 
are among those that have been used. Novel meta-heu-
ristic algorithms and epistasis interaction models have 
not yet been developed. We considered the spherical 
evolution (SE) method for solving the EI problem. The 
SE algorithm was first proposed by our team in 2019 
[40]. Although the SE algorithm performed well in solv-
ing optimization problems, it was easily trapped in local 
optima. Here, we propose a SE method based on the 
feedback mechanism and a linear mixed statistical epista-
sis model (LMSE) instead of the traditional many-objec-
tive epistasis models that have been used to solve the EI 
problem.

EI identification problem
The EI identification problem can be represented as a 
matrix D = (X,Y),X ∈ Z

m×n , Y ∈ S
m×1 , where m is the 

number of samples and n is the number of SNPs.  In X 

Fig. 8  SNP interaction network for breast cancer. Nodes are SNPs and edges are SNP–SNP interactions. Black edges indicate two-way SNP 
interactions, and every two edges of the same color in the remaining edges connect three nodes, indicating three-order SNP interactions
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( ∀xi,j ∈ {0, 1, 2} , 0 represents the homozygous major 
allele, 1 represents the heterozygous allele, and 2 repre-
sents the homozygous minor allele, and xi,j is the geno-
type of the j-th SNP and the i-th sample in dataset D. In 
Y ( ∀yi ∈ {0, 1} ), 0 represents the control and 1 represents 
the case, and yi is the phenotype of the i-th sample in 
dataset D, which represents the disease status of the i-th 
sample corresponding to its SNPs.

If the k-SNP combination set is defined as 
X

′

m,k = (x1..m,j1 , x1..m,j2 ...x1..m,jp ...x1..m,jk )|1 ≤ p ≤ k , k << n   , 
then the optimization epistasis model can be represented 
as: minx′⊂xf

(

x′m,k ,Ym

)

 , where X ′
m,k is a set of k-order 

SNPs and f  is an optimization epistasis model (a scoring 
function) for evaluating the association between a k-SNPs 
( X ′

m,k ) and disease status ( Ym).

Spherical evolution approach with feedback mechanism
The SE algorithm [40] searches for all regions of a sphere 
by continuously adjusting the radius and angle of the 
sphere. However, the current SE algorithm lacks a good 
feedback mechanism. Adaptive parameter control and 
population size control strategies have been proposed to 
improve the accuracy of the differential evolution algo-
rithm [54]. Inspired by these strategies, we used adap-

tive spherical search and population updating strategies 
for the feedback mechanism of the SE algorithm. We also 
designed a fitness function using a linear mix optimiza-
tion epistasis model. The main steps are:

Step 1: Population initialization

Randomly generate N individuals (solution vectors) in 
the search space. In the jth dimension, the search space 
is limited in [ amin,j,amax,j ], where amin,j is 1 and amax,j is 
equal to the order of SNP. If ai,j denotes a solution vector 
i ∈ [1, 2, . . . , N], j ∈ [1, 2 . . . , SNP ], then

where rand[0, 1]   is a number of uniform distribution 
from 0 to 1.

Step 2: Spherical search operator

To obtain a better individual (solution vector), each 
individual agi,∗ in the population performs a spheri-
cal search operation as shown in Eqs.  (5), (6), and (7) 
or Eqs. (8) and (9), where apbest,j is an individual chosen 
from a set of the better individuals in the current genera-
tion (sort and select based on the better fitness values), 
ar1,j is an individual selected randomly from the popula-
tion, and ah,j is an individual selected randomly from a 
set of the excellent individuals in each generation. Scale is 
the only important parameter (search factor), which rep-
resents the radius of a sphere. In three-dimensional (3D) 
space, the spherical search can be formulated as:

In two-dimensional (2D) space, the spherical search can 
be formulated as:

where  is a random number of uniform distribution 
between [0, 2 π].
Sdim numbers are selected randomly in the search space 

[1, 2, …, DIM], where DIM is the maximum number of 
SNPs, and Sdim is the spherical search dimension ( Sdim =2 

(1)ai,j = amin,j + rand[0, 1].(amax,j − amin,j)

(2)
a
g+1

i,j = a
g
i,j+Scale·||apbest,∗−ai,∗||2·

∏dim−1

k=j
sin

(

θj
)

+Scale·||ar1,∗−ah,∗||2·
∏dim−1

k=j
sin

(

θj
)

, j = 1

(3)a
g+1

i,j = a
g
i,j+Scale·||apbest,∗−ai,∗||2·

∏dim−1

k=j
sin

(

θj
)

+Scale·||ar1,∗−ah,∗||2·
∏dim−1

k=j
sin

(

θj
)

, j = 1

(4)a
g+1

i,l = a
g
i,l+Scale·||apbest,∗−ai,∗||2.cos(θj−1)+Scale·||ar1,∗−ah,∗||2.cos(θj−1)j = dim.

(5)a
g+1

i,j = a
g
i,j + Scale · ||apbest,∗ − ai,∗||2.sin(θ)+ Scale · |

∣

∣ar1,∗ − ah,∗
∣

∣|2.sin(θ),

(6)a
g+1

i,k = a
g
i,k + Scale · ||apbest,∗ − ai,∗||2.cos(θ)+ Scale · |

∣

∣ar1,∗ − ah,∗
∣

∣|2.cos(θ),
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is the search in 2D space for 2-order SNP combinations 
or Sdim =3 is the search in 3D space for high-order SNP 
combinations). The search dimension can use 2D and 
3D spherical search styles, with the two spherical search 
styles running alternately.

Step 3: Updating operation

The fitness function of each new individual ag+1

i    in a 
population is calculated and compared with the fitness 
function of the old individual agi  . Excellent individuals 
are retained in a set H.

Step 4: Adaptive adjustment of spherical search scale

In spherical search operations, the spherical search fac-
tor is also known as the spherical search radius, which 
has a significant impact on the search of each individual. 
The traditional spherical search factor directly controls 
the size of the search radius based on the fitness func-
tion of the population. This method accelerates the con-
vergence speed of the algorithm, but it also causes the 

(7)a
g+1

i =

{

a
g+1

i , if a
g+1

i < a
g
i

a
g
i

algorithm to easily fall into local optima. Therefore, in 
this paper, we adopted the adaptive adjustment strategy 
for the spherical search factor as follows:

where f
(

a
g+1

i

)

 is the fitness value of the new individual i 
in the population, f

(

a
g
i

)

 is the fitness function value of 
the previous generation, and �f

g+1

i  is the winning inten-
sity of the individual.

where wg+1

i  is the weight of the winning ability of the 
individual in the current generation of the population.

where Scalegn is the value of the spherical search factor in 
generation g and msg+1 is the weighted value of the spheri-
cal search factor of the population in generation g + 1.

(8)�f
g+1

i =

∣

∣

∣
f
(

a
g+1

i

)

− f
(

a
g
i

)∣

∣

∣

(9)w
g+1

i =
�f

g+1

i
∑popsize

l=1
�f

g+1

l

(10)msg+1 =

∑popsize
n=1 w

g+1
n ∗ (Scale

g
n)

2

∑popsize
n=1 w

g+1
n ∗ (Scale

g
n)

Fig. 9  Pseudo code of the SEEI algorithm
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where MS is a set of the weighted value of the spherical 
search factor for consecutive r generations.

(11)MS = [ms1,ms2, . . . ,msr]

(12)ti = randc(msr1, 0.1)

A spherical search factor is selected randomly from 
the MS set and the Cauchy distribution, represented by 
randc(msr1, 0.1), is used to generate a new search factor 
value ti.

Step 5: Population updating strategy

Fig. 10  Single epistasis model BN K2 function

Fig. 11  Single epistasis model GINI function
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To enhance the diversity of the population, the excellent 
individuals who won in previous consecutive generations of 
the population are preserved and stored in a set of excellent 
individuals (H). In a spherical search operation, individual 
ah,j are generated randomly from H, seen as Eqs. (5)– (6). H ′ 
is the new set of the current excellent individuals.

(13)H = H ∪H
′

After each generation evolution, the next generation 
population size Popsizeg+1 is calculated as:

Popsizeinit  is set to the smallest possible value so that 
the reproduction operator can be applied; FES is the 

(14)
Popsizeg+1 = round

[(

Popsizeinitmin

FESmax
· FES + Popsizeinit

)]

Fig. 12  Single epistasis model MI function

Fig. 13  Single epistasis model LR function
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current fitness evaluation number and FESmax is the 
maximum fitness evaluation number.

Linear mixed statistical epistasis model (LMSE)
In recent years, multi-objective algorithms have been 
used to solve EI problems. However, these algorithms 

do not converge efficiently for solving multi-objective 
optimization models. We combined two approximately 
normalized functions to convert a multi-objective 
optimization problem to a single-objective optimiza-
tion problem for the evolutionary iterations of the 
algorithm, and calculated the lowest values of each 
scoreFuni as:

Fig. 14  Linear mixed statistical epistasis model LR-K2 function

Fig. 15  Linear mixed statistical epistasis model LR-MI function
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where Maxi and Mini are estimates of the maximum and 
minimum values of scoreFuni that are obtained during 
the initialization process.

(15)LM =
∑2

i=1

scoreFuni −Mini

Maxi −Mini

This approach attempts to address the difficulty of con-
vergence of multi-objective evolutionary algorithms to 
guarantee metric accuracy with high probability. Four 
statistical epistasis models were chosen to verify the per-
formance of the proposed algorithm, namely K2-Score, 

Fig. 16  Linear mixed statistical epistasis model LR-GINI function

Fig. 17  Linear mixed statistical epistasis model K2-MI function
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LR, MI, and GINI. Pseudo code of the SEEI algorithm is 
provided in Fig. 9.

LR‑Score [31]
LR is an indicator that reflects authenticity. It is a com-
posite index that reflects both sensitivity and specificity 
and is calculated as:

where oij and eij are the observed and expected geno-
type numbers, respectively, when SNPs are combined for 
genotype j, and phenotype is the disease state i. Low LR-
Score values indicate strong association between a SNP 
combination and a phenotype.

K2‑Score [31]
K2-Score, based on Bayesian networks, is calculated as:

where I is the number of all genotype combinations of 
a SNP and J is the number of all sample state sets. GWAS 
data usually contain only disease and control samples, so J 
is usually 2. Ni is the number of SNP combinations of the ith 
genotype, and Nij is the number SNP combinations in the 
jth state. Low K2-Score values indicate high correlation of a 
SNP combination with a disease state.

(16)
LR = 2

∑I

i=1

∑J

j=1
oij ln

(

oij

eij

)

= 2
∑I

i=1

∑J

j=1
nij ln

(

nij

eij

)

(17)K2− Score =
∏I

i=1

(J − 1)!

(Ni + J − 1)!

∏J

j=1
Nij!,

Mutual information [32]
Mutual information (MI) is one of the most commonly 
used measures for feature selection. We used MI to meas-
ure the correlation between SNP combinations and pheno-
types as:

where A is the SNP combination, Y is the phenotype, 
H(A) is the entropy of A, H(Y) is the entropy of Y, and 
H(A,Y) is the joint entropy of A and Y. High MI scores 
indicate strong correlation between SNP combinations 
and phenotypes.

Gini index (GINI) [32]
The Gini index can be used to measure the degree of 
impurities and inequality in a dataset, as well as to ana-
lyze how dispersed the data are. The Gini Index is defined 
as:

where Pi is the probability of the ith genotype combina-
tion in the sample set, and Pi,j is the estimated probabil-
ity of the sample where the i-th genotype combination 
is related to phenotype y. 1−

∑J
j−1 P

2
i,j is the estimated 

probability that the genotype combination will be 
misclassified as phenotype Y. A low Gini coefficient 

(18)MI(A;Y ) = H(A)+H(A)−H(A,Y )

(19)GINI =
∑I

i=1
Pi

(

1−
∑J

j−1
P2
i,j

)

,

Fig. 18  Linear mixed statistical epistasis model K2-GINI function
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indicates a high degree of equality and a strong associa-
tion between a SNP combination and a phenotype.

The landscape of 2-order SNP combinations that are 
constructed for the epistasis models by the first DME 
model (DME01 with 1000 SNPs and 400 samples) ran-
domly produce 100 SNP combination pairs (2-order) 
in the 1000 SNPs. The search space is limited in a set 
as [1,2,…,1000] for each dimension. The values of the 
epistasis optimization model is as the fitness value, 
which is used to evaluate the association between SNP 
combinations and disease status. The fitness values of 
the four single epistasis models (LR, K2, MI, GINI) are 
shown in Figs. 10, 11, 12 and 13, and the fitness values 
of the six linear mixed statistical epistasis models (LR-
K2, LR-MI, LR-GINI, K2-MI, K2-GINI, MI-GINI) are 
shown in Figs.  14, 15, 16, 17, 18  and  19. Each epista-
sis model can be considered an objective function 
with multiple local optima. The landscape of the linear 
mixed statistical epistasis model is similar to the sin-
gle epistasis model. Indeed, the linear mixed statistical 
epistasis model convert the two-objective optimization 
problem into a single optimization problem.
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